Access Control and Privacy Policies (6)

Email: christian.urban at kcl.ac.uk

Office: S1.27 (1st floor Strand Building)

Slides: KEATS (also homework is there)

Access Control Logic

Formulas

F ::= true
| false
|
$$F \wedge F$$

| $F \vee F$
| $F \Rightarrow F$
| $p(t_1,...,t_n)$
| P says F "saying predicate"

Judgements

$$\Gamma \vdash F$$

Inference Rules

$$\frac{\Gamma, F \vdash F}{\Gamma \vdash F_1} \Rightarrow F_2 \quad \Gamma \vdash F_1 \\
\frac{\Gamma \vdash F_1 \Rightarrow F_2}{\Gamma \vdash F_2} \quad \frac{F_1, \Gamma \vdash F_2}{\Gamma \vdash F_1 \Rightarrow F_2} \\
\frac{\Gamma \vdash F}{\Gamma \vdash P \text{ says } F} \\
\frac{\Gamma \vdash P \text{ says } (F_1 \Rightarrow F_2) \quad \Gamma \vdash P \text{ says } F_1}{\Gamma \vdash P \text{ says } F_2}$$

Proofs

The Access Control Problem

Access Policy (□)

Recall the following scenario:

- If Admin says that file should be deleted, then this file must be deleted.
- Admin trusts Bob to decide whether file should be deleted.
- Bob wants to delete file.

 $\Gamma \vdash del file$

```
(Admin says del_file) ⇒ del_file,

Γ = (Admin says ((Bob says del_file) ⇒ del_file)),

Bob says del_file
```

How to prove $\Gamma \vdash F$?

$$\Gamma, F \vdash F$$

$$\frac{\boldsymbol{F}_1, \Gamma \vdash \boldsymbol{F}_2}{\Gamma \vdash \boldsymbol{F}_1 \Rightarrow \boldsymbol{F}_2}$$

$$\frac{\Gamma \vdash \mathbf{F}_1}{\Gamma \vdash \mathbf{F}_1 \lor \mathbf{F}_2}$$

$$\frac{\Gamma \vdash \mathbf{F}_2}{\Gamma \vdash \mathbf{F}_1 \lor \mathbf{F}_2}$$

$$\frac{\Gamma \vdash \mathbf{F}_1 \quad \Gamma \vdash \mathbf{F}_2}{\Gamma \vdash \mathbf{F}_1 \land \mathbf{F}_2}$$

1 I found that Γ contains the assumption $F_1 \Rightarrow F_2$

- **1** I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- If I can prove $\Gamma \vdash \mathbf{F}_1$,

- **①** I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- If I can prove $\Gamma \vdash \mathbf{F}_1$, then I can prove $\Gamma \vdash \mathbf{F}_2$

$$\frac{\Gamma \vdash \mathbf{F}_1 \Rightarrow \mathbf{F}_2 \quad \Gamma \vdash \mathbf{F}_1}{\Gamma \vdash \mathbf{F}_2}$$

- **①** I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- If I can prove $\Gamma \vdash \mathbf{F}_1$, then I can prove $\Gamma \vdash \mathbf{F}_2$
- **②** So better I try to prove Γ ⊢ Pred with the additional assumption F_2 .

$$F_2, \Gamma \vdash \text{Pred}$$

• P is entitled to do F $P \text{ controls } F \stackrel{\text{def}}{=} (P \text{ says } F) \Rightarrow F$ $\frac{\Gamma \vdash P \text{ controls } F \quad \Gamma \vdash P \text{ says } F}{\Gamma \vdash F}$

•
$$P$$
 speaks for Q

$$P \mapsto Q \stackrel{\text{def}}{=} \forall F.(P \text{ says } F) \Rightarrow (Q \text{ says } F)$$

$$\frac{\Gamma \vdash P \mapsto Q \quad \Gamma \vdash P \text{ says } F}{\Gamma \vdash Q \text{ says } F}$$

$$\frac{\Gamma \vdash P \mapsto Q \quad \Gamma \vdash Q \text{ controls } F}{\Gamma \vdash P \text{ controls } F}$$

Sudoku

columns

- Row-Column: each cell, must contain exactly one number
- Row-Number: each row must contain each number exactly once
- Column-Number: each column must contain each number exactly once
- Box-Number: each box must contain each number exactly once

			7				5	8
	5	6	2	Ι	8	7	9	3
						Ι		
							8	Ι
			3	7	6			
9	6							
		5		3				
		4		2	Ι	8	3	
8	7				3			

single position rules

 $\frac{\{1..9\} - \{4\} \text{ in one row}}{4 \text{ in empty position}}$

			7				5	8
	5	6	2	I	8	7	9	3
						Ι		
							8	Ι
			3	7	6			
9	6							
		5		3				
		4		2	Ι	8	3	
8	7				3			

single position rules

$$\frac{\{1..9\} - \{4\} \text{ in one row}}{4 \text{ in empty position}}$$

$$\frac{\{1..9\} - \{x\} \text{ in one column}}{x \text{ in empty position}}$$

 $\frac{\{1..9\} - \{x\} \text{ in one box}}{x \text{ in empty position}}$

			7			2	5	8
	5	6	2	Ι	8	7	9	3
						Ι	2	2
							8	Ι
			3	7	6			
9	6							
		5		3				
		4		2	Ι	8	3	
8	7				3			

candidate rules

 $\frac{X - \{x\} \text{ in one box} \quad X \subseteq \{1..9\}}{x \text{ candidate in empty positions}}$

			7			2	5	8
4	5	6	2	Ι	8	7	9	3
						Ι	2	2
							8	Ι
			3	7	6			
9	6							
		5		3				
		4		2	Ι	8	3	
8	7				3			

$$\frac{\{1..9\} - \{4\} \text{ in one row}}{4 \text{ in empty position}}$$

$$X - \{2\}$$
 in one box $X \subseteq \{1, 0\}$
2 candidate in empty positions

			7			2	5	8
4	5	6	2	Ι	8	7	9	3
						Ι	2	2
							8	Ι
			3	7	6			
9	6							
		5		3				
		4		2	Ι	8	3	
8	7				3			

$$\frac{\{1..9\} - \{4\} \text{ in one row}}{4 \text{ in empty position}}$$

$$X - \{2\}$$
 in one box $X \subseteq \{1, 2\}$ 2 candidate in empty positions

			7				5	8
	5	6	2	Ι	8	7	9	3
						Ι		
							8	Ι
			3	7	6			
9	6							2
		5		3				
		4		2	Ι	8	3	
8	7				3			

$$\frac{X - \{2\} \text{ in one box } X \subseteq \{1..9\}}{2 \text{ candidate}}$$

Sudoku

Are there sudokus that cannot be solved?

Sudoku

Are there sudokus that cannot be solved?

Ι	2	3	4	5	6	7	8	
								2
								3
								4
								5
								6
								7
								8
								9

Sometimes no rules apply at all....unsolvable sudoku.

Protocol Specifications

The Needham-Schroeder Protocol:

```
Message 1 A \rightarrow S: A, B, N_A

Message 2 S \rightarrow A: \{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_{BS}}\}_{K_{AS}}

Message 3 A \rightarrow B: \{K_{AB}, A\}_{K_{BS}}

Message 4 B \rightarrow A: \{N_B\}_{K_{AB}}

Message 5 A \rightarrow B: \{N_B - 1\}_{K_{AB}}
```

Trusted Third Party

Simple protocol for establishing a secure connection via a mutually trusted 3rd party (server):

```
Message 1 A \rightarrow S: A, B
Message 2 S \rightarrow A: \{K_{AB}\}_{K_{AS}} and \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}}
Message 3 A \rightarrow B: \{K_{AB}\}_{K_{BS}}
Message 4 A \rightarrow B: \{m\}_{K_{AB}}
```

Sending Messages

Alice sends a message m
 Alice says m

Sending Messages

• Alice sends a message *m*

Alice says m

Alice sends an encrypted message m
 (with key K)

Alice says $\{m\}_K$

Sending Messages

• Alice sends a message *m*

Alice says m

 Alice sends an encrypted message m (with key K)

Alice says $\{m\}_K$

• Decryption of Alice's message

$$\frac{\Gamma \vdash \text{Alice says } \{m\}_K \quad \Gamma \vdash \text{Alice says } K}{\Gamma \vdash \text{Alice says } m}$$

Encryption

• Encryption of a message

$$\frac{\Gamma \vdash \text{Alice says } m \quad \Gamma \vdash \text{Alice says } K}{\Gamma \vdash \text{Alice says } \{m\}_K}$$

Public/Private Keys

• Bob has a private and public key: K_{Bob}^{pub} , K_{Bob}^{priv}

$$\frac{\Gamma \vdash \text{Alice says } \{m\}_{K_{Bob}^{pub}} \quad \Gamma \vdash K_{Bob}^{priv}}{\Gamma \vdash \text{Alice says } m}$$

Public/Private Keys

• Bob has a private and public key: K_{Bob}^{pub} , K_{Bob}^{priv}

$$\frac{\Gamma \vdash \text{Alice says } \{m\}_{K_{Bob}^{pub}} \quad \Gamma \vdash K_{Bob}^{priv}}{\Gamma \vdash \text{Alice says } m}$$

• this is **not** a derived rule!

Trusted Third Party

- Alice calls Sam for a key to communicate with Bob
- Sam responds with a key that Alice can read and a key Bob can read (pre-shared)
- Alice sends the message encrypted with the key and the second key it recieved

```
A 	ext{ sends } S : Connect(A, B)
S 	ext{ sends } A : \{K_{AB}\}_{K_{AS}} 	ext{ and } \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}}
A 	ext{ sends } B : \{K_{AB}\}_{K_{BS}}
A 	ext{ sends } B : \{m\}_{K_{AB}}
```

Sending Rule

$$\frac{\Gamma \vdash P \text{ says } F \quad \Gamma \vdash P \text{ sends } Q : F}{\Gamma \vdash Q \text{ says } F}$$

Sending Rule

$$\frac{\Gamma \vdash P \text{ says } F \quad \Gamma \vdash P \text{ sends } Q : F}{\Gamma \vdash Q \text{ says } F}$$

$$P \text{ sends } Q : F \stackrel{\text{def}}{=} (P \text{ says } F) \Rightarrow (Q \text{ says } F)$$

Trusted Third Party

```
A 	ext{ sends } S : Connect(A, B)
S 	ext{ says } (Connect(A, B) \Rightarrow \{K_{AB}\}_{K_{AS}} \land \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}})
S 	ext{ sends } A : \{K_{AB}\}_{K_{AS}} \land \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}}
A 	ext{ sends } B : \{K_{AB}\}_{K_{AB}}
A 	ext{ sends } B : \{m\}_{K_{AB}}
```

Trusted Third Party

```
\begin{array}{l} A \text{ sends } S : \textit{Connect}(A,B) \\ S \text{ says } (\textit{Connect}(A,B) \Rightarrow \\ \{K_{AB}\}_{K_{AS}} \wedge \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}}) \\ S \text{ sends } A : \{K_{AB}\}_{K_{AS}} \wedge \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}} \\ A \text{ sends } B : \{K_{AB}\}_{K_{BS}} \\ A \text{ sends } B : \{m\}_{K_{AB}} \end{array}
```

 $\Gamma \vdash \mathbf{B} \text{ says } \mathbf{m}$?