
Access Control and
Privacy Policies (6)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

APP 06, King’s College London, 12 November 2013 – p. 1/27

Access Control Logic
Formulas

F ::= true
| false
| F ∧ F
| F ∨ F
| F ⇒ F
| p (t1,...,tn)
| P says F “saying predicate”

Judgements
Γ ⊢ F

APP 06, King’s College London, 12 November 2013 – p. 2/27

Inference Rules

Γ, F ⊢ F

Γ ⊢ F1 ⇒ F2 Γ ⊢ F1

Γ ⊢ F2

F1, Γ ⊢ F2

Γ ⊢ F1 ⇒ F2

Γ ⊢ F
Γ ⊢ P says F

Γ ⊢ P says (F1 ⇒ F2) Γ ⊢ P says F1

Γ ⊢ P says F2

APP 06, King’s College London, 12 November 2013 – p. 3/27

Proofs

:
:

: :
:

:
Γ ⊢ F

APP 06, King’s College London, 12 November 2013 – p. 4/27

The Access Control
Problem

..

access
request
(F) .

provable/
not provable

.

AC-
Checker:
applies
inference
rules.

Access Policy (Γ)

APP 06, King’s College London, 12 November 2013 – p. 5/27

Recall the following scenario:
If Admin says that file should be deleted, then
this file must be deleted.
Admin trusts Bob to decide whether file should
be deleted.
Bob wants to delete file.

Γ =
(Admin says del_file) ⇒ del_file,
(Admin says ((Bob says del_file) ⇒ del_file)),
Bob says del_file

Γ ⊢ del_file

APP 06, King’s College London, 12 November 2013 – p. 6/27

How to prove Γ ⊢ F ?

Γ, F ⊢ F

APP 06, King’s College London, 12 November 2013 – p. 7/27

F1, Γ ⊢ F2

Γ ⊢ F1 ⇒ F2

APP 06, King’s College London, 12 November 2013 – p. 8/27

Γ ⊢ F
Γ ⊢ P says F

APP 06, King’s College London, 12 November 2013 – p. 9/27

Γ ⊢ F1

Γ ⊢ F1 ∨ F2

Γ ⊢ F2

Γ ⊢ F1 ∨ F2

APP 06, King’s College London, 12 November 2013 – p. 10/27

Γ ⊢ F1 Γ ⊢ F2

Γ ⊢ F1 ∧ F2

APP 06, King’s College London, 12 November 2013 – p. 11/27

I want to prove Γ ⊢ Pred

...1 I found that Γ contains the assumption F1 ⇒ F2

...2 If I can prove Γ ⊢ F1, then I can prove
Γ ⊢ F2

...3 So better I try to prove Γ ⊢ Pred with the
additional assumption F2.

F2, Γ ⊢ Pred

APP 06, King’s College London, 12 November 2013 – p. 12/27

I want to prove Γ ⊢ Pred

...1 I found that Γ contains the assumption F1 ⇒ F2

...2 If I can prove Γ ⊢ F1, then I can prove
Γ ⊢ F2

...3 So better I try to prove Γ ⊢ Pred with the
additional assumption F2.

F2, Γ ⊢ Pred

APP 06, King’s College London, 12 November 2013 – p. 12/27

I want to prove Γ ⊢ Pred

...1 I found that Γ contains the assumption F1 ⇒ F2

...2 If I can prove Γ ⊢ F1,

then I can prove
Γ ⊢ F2

...3 So better I try to prove Γ ⊢ Pred with the
additional assumption F2.

F2, Γ ⊢ Pred

APP 06, King’s College London, 12 November 2013 – p. 12/27

I want to prove Γ ⊢ Pred

...1 I found that Γ contains the assumption F1 ⇒ F2

...2 If I can prove Γ ⊢ F1, then I can prove
Γ ⊢ F2

...3 So better I try to prove Γ ⊢ Pred with the
additional assumption F2.

F2, Γ ⊢ Pred

APP 06, King’s College London, 12 November 2013 – p. 12/27

Γ ⊢ F1 ⇒ F2 Γ ⊢ F1

Γ ⊢ F2

I want to prove Γ ⊢ Pred

...1 I found that Γ contains the assumption F1 ⇒ F2

...2 If I can prove Γ ⊢ F1, then I can prove
Γ ⊢ F2

...3 So better I try to prove Γ ⊢ Pred with the
additional assumption F2.

F2, Γ ⊢ Pred

APP 06, King’s College London, 12 November 2013 – p. 12/27

P is entitled to do F

P controls F def
= (P says F) ⇒ F

Γ ⊢ P controls F Γ ⊢ P says F
Γ ⊢ F

P speaks for Q
P 7→ Q

def
= ∀F.(P says F) ⇒ (Q says F)

Γ ⊢ P 7→ Q Γ ⊢ P says F
Γ ⊢ Q says F

Γ ⊢ P 7→ Q Γ ⊢ Q controls F
Γ ⊢ P controls F

APP 06, King’s College London, 12 November 2013 – p. 13/27

Sudoku

...

2

..

5

..

1

..

9

..

8

...

2

..

3

...

6

..

3

...

6

...

7

....

1

....

6

...

5

.

4

......

1

.

9

...

2

....

7

....

9

...

3

...

8

..
2

...
8

..
4

...
7

.. 1.. 9.. 7.. 6..
columns

.

ro
w

s

.

box

APP 06, King’s College London, 12 November 2013 – p. 14/27

...1 Row-Column: each cell,
must contain exactly one
number

...2 Row-Number: each row
must contain each number
exactly once

...3 Column-Number: each
column must contain each
number exactly once

...4 Box-Number: each box
must contain each number
exactly once

Solving Sudokus

.....

7

....

5

.

8

..

5

.

6

.

2

.

1

.

8

.

7

.

9

.

3

.......

1

..........

8

.

1

....

3

.

7

.

6

....

9

.

6

..........

5

..

3

.......
4

..
2

.
1

.
8

.
3

..8. 7.... 3...

APP 06, King’s College London, 12 November 2013 – p. 15/27

single position rules

{1..9} − {4} in one row
4 in empty position

{1..9} − {x} in one column
x in empty position

{1..9} − {x} in one box
x in empty position

Solving Sudokus

.....

7

....

5

.

8

..

5

.

6

.

2

.

1

.

8

.

7

.

9

.

3

.......

1

..........

8

.

1

....

3

.

7

.

6

....

9

.

6

..........

5

..

3

.......
4

..
2

.
1

.
8

.
3

..8. 7.... 3...

APP 06, King’s College London, 12 November 2013 – p. 15/27

single position rules

{1..9} − {4} in one row
4 in empty position

{1..9} − {x} in one column
x in empty position

{1..9} − {x} in one box
x in empty position

Solving Sudokus

.....

7

...

2

.

5

.

8

..

5

.

6

.

2

.

1

.

8

.

7

.

9

.

3

.......

1

.

2

.

2

........

8

.

1

....

3

.

7

.

6

....

9

.

6

..........

5

..

3

.......
4

..
2

.
1

.
8

.
3

..8. 7.... 3...

APP 06, King’s College London, 12 November 2013 – p. 16/27

candidate rules

X − {x} in one box X ⊆ {1..9}
x candidate in empty positions

Solving Sudokus

.....

7

...

2

.

5

.

8

.

4

.

5

.

6

.

2

.

1

.

8

.

7

.

9

.

3

.......

1

.

2

.

2

........

8

.

1

....

3

.

7

.

6

....

9

.

6

..........

5

..

3

.......
4

..
2

.
1

.
8

.
3

..8. 7.... 3...

APP 06, King’s College London, 12 November 2013 – p. 17/27

{1..9} − {4} in one row
4 in empty position

X − {2} in one box X ⊆ {1..9}
2 candidate in empty positions

..a

.a

..a

.a

Solving Sudokus

.....

7

...

2

.

5

.

8

.

4

.

5

.

6

.

2

.

1

.

8

.

7

.

9

.

3

.......

1

.

2

.

2

........

8

.

1

....

3

.

7

.

6

....

9

.

6

..........

5

..

3

.......
4

..
2

.
1

.
8

.
3

..8. 7.... 3...

APP 06, King’s College London, 12 November 2013 – p. 17/27

{1..9} − {4} in one row
4 in empty position

X − {2} in one box X ⊆ {1..9}
2 candidate in empty positions

.

.a

.a

.

.a

.a

Solving Sudokus

.....

7

....

5

.

8

..

5

.

6

.

2

.

1

.

8

.

7

.

9

.

3

.......

1

..........

8

.

1

....

3

.

7

.

6

....

9

.

6

.......

2

...

5

..

3

.......
4

..
2

.
1

.
8

.
3

..8. 7.... 3...

APP 06, King’s College London, 12 November 2013 – p. 18/27

X − {2} in one box X ⊆ {1..9}
2 candidate

..a

Sudoku
Are there sudokus that cannot be solved?

..

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

..........

2

.........

3

.........

4

.........

5

.........

6

.........

7

.........
8

......... 9

Sometimes no rules apply at all....unsolvable
sudoku.

APP 06, King’s College London, 12 November 2013 – p. 19/27

Sudoku
Are there sudokus that cannot be solved?

..

1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

..........

2

.........

3

.........

4

.........

5

.........

6

.........

7

.........
8

......... 9

Sometimes no rules apply at all....unsolvable
sudoku.

APP 06, King’s College London, 12 November 2013 – p. 19/27

Protocol Specifications

The Needham-Schroeder Protocol:

Message 1 A → S :A,B,NA

Message 2 S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

Message 3 A → B : {KAB, A}KBS

Message 4 B → A : {NB}KAB

Message 5 A → B : {NB − 1}KAB

APP 06, King’s College London, 12 November 2013 – p. 20/27

Trusted Third Party

Simple protocol for establishing a secure
connection via a mutually trusted 3rd party
(server):

Message 1 A → S :A,B
Message 2 S → A : {KAB}KAS

and {{KAB}KBS
}KAS

Message 3 A → B : {KAB}KBS

Message 4 A → B : {m}KAB

APP 06, King’s College London, 12 November 2013 – p. 21/27

Sending Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ⊢ Alice says {m}K Γ ⊢ Alice says K

Γ ⊢ Alice says m

APP 06, King’s College London, 12 November 2013 – p. 22/27

Sending Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ⊢ Alice says {m}K Γ ⊢ Alice says K

Γ ⊢ Alice says m

APP 06, King’s College London, 12 November 2013 – p. 22/27

Sending Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ⊢ Alice says {m}K Γ ⊢ Alice says K

Γ ⊢ Alice says m

APP 06, King’s College London, 12 November 2013 – p. 22/27

Encryption

Encryption of a message
Γ ⊢ Alice says m Γ ⊢ Alice says K

Γ ⊢ Alice says {m}K

APP 06, King’s College London, 12 November 2013 – p. 23/27

Public/Private Keys

Bob has a private and public key: Kpub
Bob, K

priv
Bob

Γ ⊢ Alice says {m}Kpub
Bob

Γ ⊢ Kpriv
Bob

Γ ⊢ Alice says m

this is not a derived rule!

APP 06, King’s College London, 12 November 2013 – p. 24/27

Public/Private Keys

Bob has a private and public key: Kpub
Bob, K

priv
Bob

Γ ⊢ Alice says {m}Kpub
Bob

Γ ⊢ Kpriv
Bob

Γ ⊢ Alice says m

this is not a derived rule!

APP 06, King’s College London, 12 November 2013 – p. 24/27

Trusted Third Party
Alice calls Sam for a key to communicate with
Bob
Sam responds with a key that Alice can read and a
key Bob can read (pre-shared)
Alice sends the message encrypted with the key
and the second key it recieved

A sends S : Connect(A,B)
S sends A : {KAB}KAS

and {{KAB}KBS
}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

APP 06, King’s College London, 12 November 2013 – p. 25/27

Sending Rule

Γ ⊢ P says F Γ ⊢ P sends Q : F

Γ ⊢ Q says F

P sends Q : F
def
=

(P says F) ⇒ (Q says F)

APP 06, King’s College London, 12 November 2013 – p. 26/27

Sending Rule

Γ ⊢ P says F Γ ⊢ P sends Q : F

Γ ⊢ Q says F

P sends Q : F
def
=

(P says F) ⇒ (Q says F)

APP 06, King’s College London, 12 November 2013 – p. 26/27

Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B) ⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ⊢ B says m?

APP 06, King’s College London, 12 November 2013 – p. 27/27

Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B) ⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ⊢ B says m?

APP 06, King’s College London, 12 November 2013 – p. 27/27

