
Security Engineering (4)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also home work is there)

SEN 04, King’s College London – p. 1/54

last week: buffer overflow attacks

this required some cheating on a modern OS
but the main point: no cheating needed in
practice (remember the quote about toasters)

SEN 04, King’s College London – p. 2/54

Case-In-Point: Android

a list of common Android vulnerabilities (5 BOAs
out of 35 vulnerabilities; all from 2013 and later):

http://androidvulnerabilities.org/

a paper that attempts to measure the security of
Android phones:
“We find that on average 87.7% of Android devices are ex-
posed to at least one of 11 known critical vulnerabilities…”

https://www.cl.cam.ac.uk/~drt24/papers/spsm-scoring.pdf

SEN 04, King’s College London – p. 3/54

http://androidvulnerabilities.org/
https://www.cl.cam.ac.uk/~drt24/papers/spsm-scoring.pdf

Survey at KEATS

Thanks!

SEN 04, King’s College London – p. 4/54

TwoGeneral Counter
Measures against BOAs etc
Both try to reduce the attack surface (trusted
computing base):

unikernels – the idea is to not have an operating
system at all
all functionality of the server is implemented in a
single, stand-alone program
all functionality an operating system would
normally provide (network stack, file system) is
available through libraries
the best known unikernel is MirageOS using
Ocaml (https://mirage.io)

SEN 04, King’s College London – p. 5/54

https://mirage.io

NetworkApplications:
Privilege Separation

Internet
Application Interface

unprivileged
process

privileged
process

the idea is make the attack surface smaller and
mitigate the consequences of an attack

SEN 04, King’s College London – p. 6/54

Access Control in Unix
access control provided by the OS
authenticate principals
mediate access to files, ports, processes etc
according to roles (user ids)
roles get attached with privileges (some special
roles: root)

principle of least privilege:
users and programs should only have
as much privilege as they need to
accomplish a task

SEN 04, King’s College London – p. 7/54

Access Control in Unix (2)

privileges are specified by file access permissions
(“everything is a file”)

there are 9 (plus 2) bits that specify the
permissions of a file

-︸︷︷︸
directory

r--︸ ︷︷ ︸
user

rw-︸ ︷︷ ︸
group

rwx︸ ︷︷ ︸
other

bob staff file

SEN 04, King’s College London – p. 8/54

Unix-Style Access Control
Q: “I am using Windows. Why should I care?”
A: In Windows you have similar AC:

administrators group
(has complete control over the machine)

authenticated users
server operators
power users
network configuration operators

Modern versions of Windows have more fine-grained AC
than Unix; they do not have a setuid bit, but have runas
(asks for a password).

SEN 04, King’s College London – p. 9/54

Weaknesses of Unix AC

Not just restricted to Unix:
if you have too many roles (i.e. too finegrained
AC), then hierarchy is too complex
you invite situations like…let’s be root

you can still abuse the system…

SEN 04, King’s College London – p. 10/54

A “Cron”-Attack

The idea is to trick a privileged person to do
something on your behalf:
root:
rm /tmp/*/*

the shell behind the scenes:
rm /tmp/dir1/file1 /tmp/dir1/file2 /tmp/dir2/file1 …

this takes time

SEN 04, King’s College London – p. 11/54

A “Cron”-Attack

The idea is to trick a privileged person to do
something on your behalf:
root:
rm /tmp/*/*

the shell behind the scenes:
rm /tmp/dir1/file1 /tmp/dir1/file2 /tmp/dir2/file1 …

this takes time

SEN 04, King’s College London – p. 11/54

A “Cron”-Attack
1 attacker (creates a fake passwd file)

mkdir /tmp/a; cat > /tmp/a/passwd

2 root (does the daily cleaning)
rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

4 root now deletes the real passwd file
SEN 04, King’s College London – p. 12/54

A “Cron”-Attack
1 attacker (creates a fake passwd file)

mkdir /tmp/a; cat > /tmp/a/passwd

2 root (does the daily cleaning)
rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

4 root now deletes the real passwd file
SEN 04, King’s College London – p. 12/54

To prevent this kind of attack, you
need additional policies (for example
don’t do such operations as root).

Subtleties

Can Bob write file?

What if Bob is member of staff?

-︸︷︷︸
directory

r--︸︷︷︸
user

rw-︸︷︷︸
group

rwx︸︷︷︸
other

bob staff file

SEN 04, King’s College London – p. 13/54

Subtleties

Can Bob write file?
What if Bob is member of staff?

-︸︷︷︸
directory

r--︸︷︷︸
user

rw-︸︷︷︸
group

rwx︸︷︷︸
other

bob staff file

SEN 04, King’s College London – p. 13/54

Login Processes

login processes run under UID = 0

ps -axl | grep login

after login, shells run under UID = user (e.g. 501)

id cu

non-root users are not allowed to change the
UID — would break access control
but needed for example for accessing passwd

SEN 04, King’s College London – p. 14/54

Login Processes

login processes run under UID = 0

ps -axl | grep login

after login, shells run under UID = user (e.g. 501)

id cu

non-root users are not allowed to change the
UID — would break access control
but needed for example for accessing passwd

SEN 04, King’s College London – p. 14/54

Setuid and Setgid
The solution is that Unix file permissions are 9 +
2 Bits: Setuid and Setgid bits
When a file with setuid is executed, the resulting
process will assume the UID given to the owner
of the file.
This enables users to create processes as root (or
another user).

Essential for changing passwords, for example.

chmod 4755 fobar_file

SEN 04, King’s College London – p. 15/54

Discretionary Access Control

Access to objects (files, directories, devices, etc.) is
permitted based on user identity. Each object is owned by a
user. Owners can specify freely (at their discretion) how
they want to share their objects with other users, by
specifying which other users can have which form of access
to their objects.

Discretionary access control is implemented on any
modern multi-user OS (Unix, Windows NT, etc.).

SEN 04, King’s College London – p. 16/54

Mandatory Access Control
Access to objects is controlled by a system-wide policy, for
example to prevent certain flows of information. In some
forms, the system maintains security labels for both objects
and subjects (processes, users) based on which access is
granted or denied. Labels can change as the result of an
access. Security policies are enforced without the
cooperation of users or programs.

This is implemented in banking or military operating
system versions (SELinux).

A simple example: Air Gap Security. Uses a completely
separate network and computer hardware for different
application classes (Bin Laden, Bruce Schneier had airgaps).

What do we want to protect: Secrecy or Integrity?

SEN 04, King’s College London – p. 17/54

Mandatory Access Control
Access to objects is controlled by a system-wide policy, for
example to prevent certain flows of information. In some
forms, the system maintains security labels for both objects
and subjects (processes, users) based on which access is
granted or denied. Labels can change as the result of an
access. Security policies are enforced without the
cooperation of users or programs.

This is implemented in banking or military operating
system versions (SELinux).

A simple example: Air Gap Security. Uses a completely
separate network and computer hardware for different
application classes (Bin Laden, Bruce Schneier had airgaps).

What do we want to protect: Secrecy or Integrity?

SEN 04, King’s College London – p. 17/54

Mandatory Access Control
Access to objects is controlled by a system-wide policy, for
example to prevent certain flows of information. In some
forms, the system maintains security labels for both objects
and subjects (processes, users) based on which access is
granted or denied. Labels can change as the result of an
access. Security policies are enforced without the
cooperation of users or programs.

This is implemented in banking or military operating
system versions (SELinux).

A simple example: Air Gap Security. Uses a completely
separate network and computer hardware for different
application classes (Bin Laden, Bruce Schneier had airgaps).

What do we want to protect: Secrecy or Integrity?
SEN 04, King’s College London – p. 17/54

TheBell-LaPadulaModel
Formal policy model for mandatory access control in a
military multi-level security environment. All subjects
(processes, users, terminals, files, windows, connections) are
labeled with a confidentiality level, e.g.

unclassified < confidential < secret < top secret

The system policy automatically prevents the flow of
information from high-level objects to lower levels. A
process that reads top secret data becomes tagged as top
secret by the operating system, as will be all files into which
it writes afterwards.

SEN 04, King’s College London – p. 18/54

Bell-LaPadula

Read Rule: A principal P can read an object O if and only if
P’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P’s.

This restricts information flow ⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’

SEN 04, King’s College London – p. 19/54

Bell-LaPadula

Read Rule: A principal P can read an object O if and only if
P’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P’s.

This restricts information flow ⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’

SEN 04, King’s College London – p. 19/54

Principle of
Least Privilege

A principal should have as few privileges as
possible to access a resource.

Bob (TS) and Alice (S) want to communicate

⇒ Bob should lower his security level

SEN 04, King’s College London – p. 20/54

Biba Policy
Data Integrity (rather than data secrecy)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only if
P’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P’s.

E.g. Firewalls: you can read from inside the firewall, but not
from outside
Phishing: you can look at an approved PDF, but not one
from a random email

SEN 04, King’s College London – p. 21/54

Biba Policy
Data Integrity (rather than data secrecy)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only if
P’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P’s.

E.g. Firewalls: you can read from inside the firewall, but not
from outside
Phishing: you can look at an approved PDF, but not one
from a random email

SEN 04, King’s College London – p. 21/54

Security Levels (2)

Bell-La Padula preserves data secrecy, but not
data integrity

Biba model is for data integrity
read: your own level and above
write: your own level and below

SEN 04, King’s College London – p. 22/54

Security Levels (2)

Bell-La Padula preserves data secrecy, but not
data integrity

Biba model is for data integrity
read: your own level and above
write: your own level and below

SEN 04, King’s College London – p. 22/54

Shared Access Control

SEN 04, King’s College London – p. 23/54

To take an action you
need at least either:

1 CEO
2 MDs, or
3 Ds

Lessons fromAccess Control

Not just restricted to Unix:
if you have too many roles (i.e. too finegrained
AC), then hierarchy is too complex
you invite situations like…lets be root

you can still abuse the system…

SEN 04, King’s College London – p. 24/54

Protocols

Other examples: Wifi, Http-request,
TCP-request, card readers, RFID (passports)…

The point is that we cannot control the network:
An attacker can install a packet sniffer, inject
packets, modify packets, replay messages…fake
pretty much everything.

SEN 04, King’s College London – p. 25/54

Protocols

Other examples: Wifi, Http-request,
TCP-request, card readers, RFID (passports)…

The point is that we cannot control the network:
An attacker can install a packet sniffer, inject
packets, modify packets, replay messages…fake
pretty much everything.

SEN 04, King’s College London – p. 25/54

Keyless Car Transponders

There are two security mechanisms: one remote
central locking system and one passive RFID tag
(engine immobiliser).
How can I get in? How can thieves be kept out?
How to avoid MITM attacks?

Papers: Gone in 360 Seconds: Hijacking with Hitag2,
Dismantling Megamos Crypto: Wirelessly Lockpicking

a Vehicle Immobilizer
SEN 04, King’s College London – p. 26/54

ProblemswithKey Fobs
Circumventing the ignition
protection:

either dismantling Megamos
crypto,

or use the diagnostic port to
program blank keys

SEN 04, King’s College London – p. 27/54

HTTPS / GSM

I am sitting at Starbuck. How can I be sure I am
really visiting Barclays? I have no control of the
access point.
How can I achieve that a secret key is established
in order to encrypt my mobile conversation? I
have no control over the access points.

SEN 04, King’s College London – p. 28/54

G20 Summit in 2009

Snowden documents reveal “that during the G20
meetings…GCHQ used ‘ground-breaking intelligence
capabilities’ to intercept the communications of visiting
delegations. This included setting up internet cafes where
they used an email interception program and key-logging
software to spy on delegates’ use of computers…”

“The G20 spying appears to have been organised for the
more mundane purpose of securing an advantage in
meetings.”

SEN 04, King’s College London – p. 29/54

Handshakes

starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

SEN 04, King’s College London – p. 30/54

Handshakes

starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

SEN 04, King’s College London – p. 30/54

SYNflood
attacks:

Protocols
A → B : . . .

B → A : . . .
:

by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)

SEN 04, King’s College London – p. 31/54

Protocols
A → B : . . .
B → A : . . .

:

by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)

SEN 04, King’s College London – p. 31/54

Handshakes
starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

A → S: SYN
S → A: SYN-ACK
A → S: ACK

SEN 04, King’s College London – p. 32/54

Cryptographic Protocol Failures

Ross Anderson and Roger Needham wrote:

A lot of the recorded frauds were the result of this
kind of blunder, or from management negligence
pure and simple. However, there have been a sig-
nificant number of cases where the designers pro-
tected the right things, used cryptographic algo-
rithms which were not broken, and yet found that
their systems were still successfully attacked.

SEN 04, King’s College London – p. 33/54

Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not allow
unauthorised use for more than a day, as TfL promises
to turn off any cloned cards within 24 hours…”

SEN 04, King’s College London – p. 34/54

Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not allow
unauthorised use for more than a day, as TfL promises
to turn off any cloned cards within 24 hours…”

SEN 04, King’s College London – p. 34/54

Wirelessly Pickpocketing aMifare Classic Card

The Mifare Classic is the most widely used contactless smartcard on the
market. The stream cipher CRYPTO1 used by the Classic has recently
been reverse engineered and serious attacks have been proposed. The
most serious of them retrieves a secret key in under a second. In order to
clone a card, previously proposed attacks require that the adversary either
has access to an eavesdropped communication session or executes a
message-by-message man-in-the-middle attack between the victim and a
legitimate reader. Although this is already disastrous from a cryptographic
point of view, system integrators maintain that these attacks cannot be
performed undetected.
This paper proposes four attacks that can be executed by an adversary
having only wireless access to just a card (and not to a legitimate reader).
The most serious of them recovers a secret key in less than a second on
ordinary hardware. Besides the cryptographic weaknesses, we exploit
other weaknesses in the protocol stack. A vulnerability in the
computation of parity bits allows an adversary to establish a side channel.
Another vulnerability regarding nested authentications provides enough
plaintext for a speedy known-plaintext attack. (a paper from 2009)

Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not allow
unauthorised use for more than a day, as TfL promises
to turn off any cloned cards within 24 hours…”

SEN 04, King’s College London – p. 34/54

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Passwords:

B → A : KAB

Problem: Eavesdropper can capture the secret and
replay it; A cannot confirm the identity of B

SEN 04, King’s College London – p. 35/54

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Passwords:

B → A : KAB

Problem: Eavesdropper can capture the secret and
replay it; A cannot confirm the identity of B

SEN 04, King’s College London – p. 35/54

Authentication?

SEN 04, King’s College London – p. 36/54

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Simple Challenge Response:

A → B : N
B → A : {N}KAB

SEN 04, King’s College London – p. 37/54

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Mutual Challenge Response:

A → B : NA
B → A : {NA,NB}KAB
A → B : NB

SEN 04, King’s College London – p. 38/54

Nonces
1 I generate a nonce (random number) and send it

to you encrypted with a key we share
2 you increase it by one, encrypt it under a key I

know and send it back to me
I can infer:
you must have received my message
you could only have generated your answer after I
send you my initial message
if only you and me know the key, the message
must have come from you

SEN 04, King’s College London – p. 39/54

A → B: NA
B → A: {NA,NB}KAB
A → B: NB

The attack (let A decrypt her own messages):

A → E: NA
E → A: NA
A → E: {NA,N′

A}KAB
E → A: {NA,N′

A}KAB
A → E: N′

A (= NB)

Solutions: KAB ̸= KBA or include an id in the second
message

SEN 04, King’s College London – p. 40/54

A → B: NA
B → A: {NA,NB}KAB
A → B: NB

The attack (let A decrypt her own messages):

A → E: NA
E → A: NA
A → E: {NA,N′

A}KAB
E → A: {NA,N′

A}KAB
A → E: N′

A (= NB)

Solutions: KAB ̸= KBA or include an id in the second
message

SEN 04, King’s College London – p. 40/54

Encryption to the Rescue?

A → B : {A,NA}KAB encrypted

B → A : {NA,K′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities

SEN 04, King’s College London – p. 41/54

Encryption to the Rescue?

A → B : {A,NA}KAB encrypted

B → A : {NA,K′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities

SEN 04, King’s College London – p. 41/54

Protocol Attacks

replay attacks
reflection attacks
man-in-the-middle attacks
timing attacks
parallel session attacks
binding attacks (public key protocols)
changing environment / changing assumptions

(social engineering attacks)

SEN 04, King’s College London – p. 42/54

Public-Key Infrastructure

the idea is to have a certificate authority (CA)
you go to the CA to identify yourself
CA: “I, the CA, have verified that public key PpubBob
belongs to Bob”

CA must be trusted by everybody
What happens if CA issues a false certificate?
Who pays in case of loss? (VeriSign explicitly
limits liability to $100.)

SEN 04, King’s College London – p. 43/54

Man-in-the-Middle

“Normal” protocol run:

A sends public key to B
B sends public key to A
A sends message encrypted with B’s public key, B
decrypts it with its private key
B sends message encrypted with A’s public key, A
decrypts it with its private key

SEN 04, King’s College London – p. 44/54

Man-in-the-Middle

Attack:
A sends public key to B — C intercepts this
message and send his own public key
B sends public key to A — C intercepts this
message and send his own public key
A sends message encrypted with C’s public key, C
decrypts it with its private key, re-encrypts with
B’s public key
similar for other direction

SEN 04, King’s College London – p. 45/54

Man-in-the-Middle
Potential Prevention?
A sends public key to B
B sends public key to A
A encrypts message with B’s public key, send’s
half of the message
B encrypts message with A’s public key, send’s
half of the message
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message

Under which circumstances does this protocol
prevent MiM-attacks, or does it?

SEN 04, King’s College London – p. 46/54

Man-in-the-Middle
Potential Prevention?
A sends public key to B
B sends public key to A
A encrypts message with B’s public key, send’s
half of the message
B encrypts message with A’s public key, send’s
half of the message
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message
Under which circumstances does this protocol
prevent MiM-attacks, or does it?

SEN 04, King’s College London – p. 46/54

SplittingMessages

0 X 1 p e U V T G J K + H 7 0 m M j A M 8 p︸ ︷︷ ︸
{A,m}

KpubB

0 X 1 p e U V T G J K︸ ︷︷ ︸
H1

+ H 7 0 m M j A M 8 p︸ ︷︷ ︸
H2

you can also use the even and odd bytes
the point is you cannot decrypt the halves, even if
you have the key

SEN 04, King’s College London – p. 47/54

A → C : Kpub
A

C → B : Kpub
C

B → C : Kpub
B

C → A : Kpub
C

{A,m}Kpub
C

7→ H1,H2

{B,m′}Kpub
C

7→ M1,M2

{C, a}Kpub
B

7→ C1,C2

{C, b}Kpub
A

7→ D1,D2

A → C : H1
C → B : C1
B → C : {C1,M1}Kpub

C
C → A : {H1,D1}Kpub

A
A → C : {H2,D1}Kpub

C
C → B : {C2,M1}Kpub

B
B → C : M2
C → A : D2

m = How is your grandmother? m′ = How is the weather today in London?

SEN 04, King’s College London – p. 48/54

A → C : Kpub
A

C → B : Kpub
C

B → C : Kpub
B

C → A : Kpub
C

{A,m}Kpub
C

7→ H1,H2

{B,m′}Kpub
C

7→ M1,M2

{C, a}Kpub
B

7→ C1,C2

{C, b}Kpub
A

7→ D1,D2

A → C : H1
C → B : C1
B → C : {C1,M1}Kpub

C
C → A : {H1,D1}Kpub

A
A → C : {H2,D1}Kpub

C
C → B : {C2,M1}Kpub

B
B → C : M2
C → A : D2

m = How is your grandmother? m′ = How is the weather today in London?

SEN 04, King’s College London – p. 48/54

you have to ask something that cannot be
imitated (requires A and B know each other)
what happens if m and m′ are voice messages?

So C can either leave the communication
unchanged, or invent a complete new
conversation

SEN 04, King’s College London – p. 49/54

you have to ask something that cannot be
imitated (requires A and B know each other)
what happens if m and m′ are voice messages?

So C can either leave the communication
unchanged, or invent a complete new
conversation

SEN 04, King’s College London – p. 49/54

Car Transponder (HiTag2)
1 C generates a random number N
2 C calculates (F,G) = {N}K
3 C → T: N,F
4 T calculates (F′,G′) = {N}K
5 T checks that F = F′

6 T → C: N,G′

7 C checks that G = G′

This process means that the transponder believes the car
knows the key K, and the car believes the transponder
knows the key K. They have authenticated themselves to
each other, or have they?

SEN 04, King’s College London – p. 50/54

Car Transponder (HiTag2)
1 C generates a random number N
2 C calculates (F,G) = {N}K
3 C → T: N,F
4 T calculates (F′,G′) = {N}K
5 T checks that F = F′

6 T → C: N,G′

7 C checks that G = G′

This process means that the transponder believes the car
knows the key K, and the car believes the transponder
knows the key K. They have authenticated themselves to
each other, or have they?

SEN 04, King’s College London – p. 50/54

A Man-in-the-middle attack in real life:
the card only says yes to the terminal if the PIN
is correct
trick the card in thinking transaction is verified
by signature
trick the terminal in thinking the transaction was
verified by PIN

SEN 04, King’s College London – p. 51/54

the moral: establishing a secure connection from
“zero” is almost impossible—you need to rely on
some established trust

that is why PKI relies on certificates, which
however are badly, badly realised

SEN 04, King’s College London – p. 52/54

Trusted Third Parties

Simple protocol for establishing a secure
connection via a mutually trusted 3rd party
(server):

A → S : A,B
S → A : {KAB, {KAB}KBS}KAS
A → B : {KAB}KBS
A → B : {m}KAB

SEN 04, King’s College London – p. 53/54

PKI: TheMain Idea
the idea is to have a certificate authority (CA)
you go to the CA to identify yourself
CA: “I, the CA, have verified that public key PpubBob
belongs to Bob”

CA must be trusted by everybody

certificates are time limited, and can be revoked
What happens if CA issues a false certificate?
Who pays in case of loss? (VeriSign explicitly
limits liability to $100.)

SEN 04, King’s College London – p. 54/54

PKI: Chains of Trust
CA
Root Cert.

Subordinate
CA

Server
Bank.com

Browser
Root Store

Browser
Vendor

CAs make almost no money anymore, because of
stiff competition
browser companies are not really interested in
security; only in market share

SEN 04, King’s College London – p. 55/54

PKI:Weaknesses
CAs just cannot win (make any profit):

there are hundreds of CAs, which issue millions
of certificates and the error rate is small
users (servers) do not want to pay or pay as little
as possible

a CA can issue a certificate for any domain not
needing any permission (CAs are meant to
undergo audits, but…DigiNotar)
if a CA has issued many certificates, it “becomes
too big to fail”
Can we be sure CAs are not just frontends of
some government organisation?

SEN 04, King’s College London – p. 56/54

PKI:Weaknesses
many certificates are issued via Whois, whether
you own the domain…if you hijacked a domain, it
is easy to obtain certificates

the revocation mechanism does not work
(Chrome has given up on general revocation lists)

lax approach to validation of certificates (Have
you ever bypassed certification warnings?)

sometimes you want to actually install invalid
certificates (self-signed)

SEN 04, King’s College London – p. 57/54

PKI: Attacks
Go directly after root certificates

governments can demand private keys
10 years ago it was estimated that breaking a 1024 bit
key takes one year and costs 10 - 30 Mio $; this is now
reduced to 1 Mio $

Go after buggy implementations of certificate
validation
Social Engineering

in 2001 somebody pretended to be from Microsoft and
asked for two code-signing certificates

The eco-system is completely broken (it relies on thousands
of entities to do the right thing). Maybe DNSSEC where
keys can be attached to domain names is a way out.

SEN 04, King’s College London – p. 58/54

Real Attacks
In 2011, DigiNotar (Dutch company) was the first
CA that got compromised comprehensively, and
where many fraudulent certificates were issued to
the wild. It included approximately 300,000 IP
addresses, mostly located in Iran. The attackers
(in Iran?) were likely interested “only” in
collecting gmail passwords.

The Flame malware piggy-bagged on this attack
by advertising malicious Windows updates to
some targeted systems (mostly in Iran, Israel,
Sudan).

SEN 04, King’s College London – p. 59/54

PKI is Broken

PKI and certificates are meant to protect you
against MITM attacks, but if the attack occurs
your are presented with a warning and you need
to decide whether you are under attack.

Webcontent gets often loaded from 3rd-party
servers, which might not be secured

Misaligned incentives: browser vendors are not
interested in breaking webpages with invalid
certificates

SEN 04, King’s College London – p. 60/54

Why are there so many invalid certificates?

insufficient name coverage (www.example.com
should include example.com)
IoT: many appliances have web-based admin
interfaces; the manufacturer cannot know under
which IP and domain name the appliances are
run (so cannot install a valid certificate)
expired certificates, or incomplete chains of trust
(servers are supposed to supply them)

SEN 04, King’s College London – p. 61/54

Protocols areDifficult

even the systems designed by experts regularly fail

the one who can fix a system should also be liable
for the losses

cryptography is often not the problem

SEN 04, King’s College London – p. 62/54

