
Access Control and
Privacy Policies (4)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

APP 03, King’s College London, 22 October 2014 – p. 1/37

two weeks ago: buffer overflow attacks

APP 03, King’s College London, 22 October 2014 – p. 2/37

Buffer Overflows
As a proof-of-concept, the following URL allows
attackers to control the return value saved on
the stack (the vulnerability is triggered when
executing ”/usr/sbin/widget”):

curl http://<target ip>/post_login.xml?hash=AAA...AAABBBB

The value of the ”hash” HTTP GET parameter consists in
292 occurrences of the ’A’ character, followed by four
occurrences of character ’B’. In our lab setup, characters
’B’ overwrite the saved program counter (%ra).

Discovery date: 06/03/2013
Release date: 02/08/2013

http://pastebin.com/vbiG42VD

APP 03, King’s College London, 22 October 2014 – p. 3/37

http://pastebin.com/vbiG42VD

Backdoors
D-Link router flaw lets anyone login through
”Joel’s Backdoor”:
If you tell your browser to identify itself as Joel’s
backdoor, instead of (say) as Mozilla/5.0
AppleWebKit/536.30.1 Version/6.0.5, you’re in
without authentication.
”What is this string,” I hear you ask?
You will laugh: it is

xmlset_roodkcableoj28840ybtide

October 15, 2013
http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/

APP 03, King’s College London, 22 October 2014 – p. 4/37

http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/

Access Control in Unix

access control provided by the OS
authenticate principals (login)
mediate access to files, ports, processes according
to roles (user ids)
roles get attached with privileges

..
principle of least privilege:
programs should only have as much
privilege as they need

APP 03, King’s College London, 22 October 2014 – p. 5/37

Access Control in Unix (2)

the idea is to restrict access to files and therefore
lower the consequences of an attack

APP 03, King’s College London, 22 October 2014 – p. 6/37

..
Internet

.

Interface

.
unprivileged

process

.
privileged

process

..

Access Control

Discretionary Access Control:
Access to objects (files, directories, devices, etc.) is
permitted based on user identity. Each object is owned by a
user. Owners can specify freely (at their discretion) how
they want to share their objects with other users, by
specifying which other users can have which form of access
to their objects.
Discretionary access control is implemented on any
multi-user OS (Unix, Windows NT, etc.).

APP 03, King’s College London, 22 October 2014 – p. 7/37

Access Control

Mandatory Access Control:
Access to objects is controlled by a system-wide policy, for
example to prevent certain flows of information. In some
forms, the system maintains security labels for both objects
and subjects (processes, users), based on which access is
granted or denied. Labels can change as the result of an
access. Security policies are enforced without the
cooperation of users or application programs.
This is implemented today in special military operating
system versions (SELinux).

APP 03, King’s College London, 22 October 2014 – p. 8/37

Discretionary Access
Control

In its most generic form usually given by an Access
Control Matrix of the form

/mail/jane edit.exe sendmail
jane r, w r, x r, x
john ∅ r, w, x r, x

sendmail a ∅ r, x

access privileges: read, write, execute, append

APP 03, King’s College London, 22 October 2014 – p. 9/37

Mandatory Access Control
Restrictions to allowed information flows are not
decided at the user’s discretion (as with Unix
chmod), but instead enforced by system policies.
Mandatory access control mechanisms are aimed
in particular at preventing policy violations by
untrusted application software, which typically
have at least the same access privileges as the
invoking user.
Simple example: Air Gap Security. Uses
completely separate network and computer
hardware for different application classes.

APP 03, King’s College London, 22 October 2014 – p. 10/37

The Bell/LaPadula Model
Formal policy model for mandatory access
control in a military multi-level security
environment. All subjects (processes, users,
terminals) and data objects (files, directories,
windows, connections) are labeled with a
confidentiality level, e.g.
unclassified < confidential < secret < top secret.

The system policy automatically prevents the
flow of information from high-level objects to
lower levels. A process that reads top secret data
becomes tagged as top secret by the operating
system, as will be all files into which it writes
afterwards.

APP 03, King’s College London, 22 October 2014 – p. 11/37

Bell-LaPadula

Read Rule: A principal P can read an object O if and only
if P ’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P ’s.

Meta-Rule: All principals in a system should have a
sufficiently high security level in order to access an object.

This restricts information flow ⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’

APP 03, King’s College London, 22 October 2014 – p. 12/37

Bell-LaPadula

Read Rule: A principal P can read an object O if and only
if P ’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P ’s.

Meta-Rule: All principals in a system should have a
sufficiently high security level in order to access an object.

This restricts information flow ⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’

APP 03, King’s College London, 22 October 2014 – p. 12/37

Principle of
Least Privilege

..A principal should have as few privileges as
possible to access a resource.

Bob (TS) and Alice (S) want to communicate

⇒ Bob should lower his security level

APP 03, King’s College London, 22 October 2014 – p. 13/37

Biba Policy
Data Integrity (rather than data confidentiality)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only
if P ’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P ’s.

E.g. Generals write orders to officers; officers write oders to
solidiers
Firewall: you can read from inside the firewall, but not from
outside
Phishing: you can look at an approved PDF, but not one
from a random email

APP 03, King’s College London, 22 October 2014 – p. 14/37

Biba Policy
Data Integrity (rather than data confidentiality)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only
if P ’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P ’s.

E.g. Generals write orders to officers; officers write oders to
solidiers
Firewall: you can read from inside the firewall, but not from
outside
Phishing: you can look at an approved PDF, but not one
from a random email

APP 03, King’s College London, 22 October 2014 – p. 14/37

Shared Access Control

APP 03, King’s College London, 22 October 2014 – p. 15/37

To take an action you
need at least either:

1 CEO
2 MDs, or
3 Ds

Lessons from Access
Control

Not just restricted to Unix:
if you have too many roles (i.e. too finegrained
AC), then hierarchy is too complex
you invite situations like…let’s be root

you can still abuse the system…

APP 03, King’s College London, 22 October 2014 – p. 16/37

Protocols

A sends B : . . .

B sends A : . . .
:

by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)

APP 03, King’s College London, 22 October 2014 – p. 17/37

Protocols

A sends B : . . .
B sends A : . . .

:

by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)

APP 03, King’s College London, 22 October 2014 – p. 17/37

A mutual authentication
protocol

A → B: Na

B → A: {Na, Nb}Kab

A → B: Nb

Explain how an attacker B′ can launch an
impersonation attack by intercepting all messages
for B and make A decrypt her own challenges.

APP 03, King’s College London, 22 October 2014 – p. 18/37

Nonces
...1 I generate a nonce (random number) and send it

to you encrypted with a key we share
...2 you increase it by one, encrypt it under a key I

know and send it back to me
I can infer:
you must have received my message
you could only have generated your answer after I
send you my initial message
if only you and me know the key, the message
must have come from you

APP 03, King’s College London, 22 October 2014 – p. 19/37

A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 20/37

A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 20/37

A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 20/37

A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 20/37

A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 20/37

A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 20/37

Privilege Separation in
OpenSSH

..
Internet

.

Slave

.

Slave

.
Slave

.
unprivileged

processes

.
privileged

process

.

Monitor

..

pre-authorisation slave
post-authorisation

25% codebase is privileged, 75% is unprivileged
APP 03, King’s College London, 22 October 2014 – p. 21/37

Network Applications
ideally network application in Unix should be
designed as follows:
need two distinct processes

one that listens to the network; has no privilege
one that is privileged and listens to the latter only (but
does not trust it)

to implement this you need a parent process,
which forks a child process
this child process drops privileges and listens to
hostile data

after authentication the parent forks again and
the new child becomes the user

APP 03, King’s College London, 22 October 2014 – p. 22/37

Security Levels

Unix essentially can only distinguish between two
security levels (root and non-root).
In military applications you often have many
security levels (top-secret, secret, confidential,
unclassified)

Information flow: Bell — La Padula model
read: your own level and below
write: your own level and above

APP 03, King’s College London, 22 October 2014 – p. 23/37

Security Levels

Unix essentially can only distinguish between two
security levels (root and non-root).
In military applications you often have many
security levels (top-secret, secret, confidential,
unclassified)

Information flow: Bell — La Padula model
read: your own level and below
write: your own level and above

APP 03, King’s College London, 22 October 2014 – p. 23/37

Security Levels (2)

Bell — La Padula preserves data secrecy, but not
data integrity

Biba model is for data integrity
read: your own level and above
write: your own level and below

APP 03, King’s College London, 22 October 2014 – p. 24/37

Security Levels (2)

Bell — La Padula preserves data secrecy, but not
data integrity

Biba model is for data integrity
read: your own level and above
write: your own level and below

APP 03, King’s College London, 22 October 2014 – p. 24/37

Access Control in 2000
According to Ross Anderson (1st edition of his
book), some senior Microsoft people held the
following view:

..

Access control does not matter. Computers are becoming
single-purpose or single-user devices. Single-purpose de-
vices, such as Web servers that deliver a single service, don’t
need much in the way of access control as there’s nothing
for operating system access controls to do; the job of sepa-
rating users from each other is best left to application code.
As for the PC on your desk, if all the software on it comes
from a single source, then again there’s no need for the op-
erating system to provide separation. (in
2000)

APP 03, King’s College London, 22 October 2014 – p. 25/37

Research Problems
with access control we are back to 1970s

..

Going all the way back to early time-sharing systems we
systems people regarded the users, and any code they
wrote, as the mortal enemies of us and each other. We
were like the police force in a violent slum.

— Roger Needham

the largest research area in access control in
2000-07 has been “Trusted Computing”, but
thankfully it is dead now

a useful research area is to not just have robust
access control, but also usable access control —
by programmers and users
(one possible answer is operating system
virtualisation, e.g. Xen, VMWare)
electronic voting

APP 03, King’s College London, 22 October 2014 – p. 26/37

Research Problems
with access control we are back to 1970s

the largest research area in access control in
2000-07 has been “Trusted Computing”, but
thankfully it is dead now

a useful research area is to not just have robust
access control, but also usable access control —
by programmers and users
(one possible answer is operating system
virtualisation, e.g. Xen, VMWare)

electronic voting

APP 03, King’s College London, 22 October 2014 – p. 26/37

Research Problems
with access control we are back to 1970s

the largest research area in access control in
2000-07 has been “Trusted Computing”, but
thankfully it is dead now

a useful research area is to not just have robust
access control, but also usable access control —
by programmers and users
(one possible answer is operating system
virtualisation, e.g. Xen, VMWare)

electronic voting
APP 03, King’s College London, 22 October 2014 – p. 26/37

Mobile OS
iOS and Android solve the defence-in-depth
problem by sandboxing applications

you as developer have to specify the resources an
application needs
the OS provides a sandbox where access is
restricted to only these resources

APP 03, King’s College London, 22 October 2014 – p. 27/37

Security Theatre

Security theatre is the practice of investing in
countermeasures intended to provide the feeling
of improved security while doing little or nothing
to actually achieve it. Bruce Schneier

APP 03, King’s College London, 22 October 2014 – p. 28/37

Security Theatre

for example, usual locks and strap seals are
security theatre

APP 03, King’s College London, 22 October 2014 – p. 29/37

From: Ross Anderson
<Ross.Anderson@cl.cam.ac.uk>
To: cl-security-research@lists.cam.ac.uk
Subject: Tip off
Date: Tue, 02 Oct 2012 13:12:50 +0100

I received the following tip off, and have removed
the sender’s coordinates. I suspect it is one of many
security vendors who don’t even get the basics right;
if you ever go to the RSA conference, there are a
thousand such firms in the hall, each with several
eager but ignorant salesmen. A trying experience.

Ross

APP 03, King’s College London, 22 October 2014 – p. 30/37

I’d like to anonymously tip you off about this
product:

http://www.strongauth.com/products/key-appliance.html

It sounds really clever, doesn’t it?
…

Anyway, it occurred to me that you and your col-
leagues might have a field day discovering weak-
nesses in the appliance and their implementation
of security. However, whilst I’d be willing to help
and/or comment privately, it’d have to be off the
record ;-)

APP 03, King’s College London, 22 October 2014 – p. 31/37

Schneier: Step 1

What assets are you trying to protect?

This question might seem basic, but a surprising
number of people never ask it. The question
involves understanding the scope of the problem.
For example, securing an airplane, an airport,
commercial aviation, the transportation system,
and a nation against terrorism are all different
security problems, and require different solutions.

APP 03, King’s College London, 22 October 2014 – p. 32/37

Schneier: Step 1
What assets are you trying to protect?

This question might seem basic, but a surprising
number of people never ask it. The question
involves understanding the scope of the problem.
For example, securing an airplane, an airport,
commercial aviation, the transportation system,
and a nation against terrorism are all different
security problems, and require different solutions.

..
You like to prevent: “It would be terrible if this sort of at-
tack ever happens; we need to do everything in our power
to prevent it.”

APP 03, King’s College London, 22 October 2014 – p. 32/37

Schneier: Step 2

What are the risks to these assets?

Here we consider the need for security. Answering
it involves understanding what is being defended,
what the consequences are if it is successfully
attacked, who wants to attack it, how they might
attack it, and why.

APP 03, King’s College London, 22 October 2014 – p. 33/37

Schneier: Step 3

How well does the security solution mitigate
those risks?

Another seemingly obvious question, but one that
is frequently ignored. If the security solution
doesnÕt solve the problem, it’s no good. This is
not as simple as looking at the security solution
and seeing how well it works. It involves looking
at how the security solution interacts with
everything around it, evaluating both its operation
and its failures.

APP 03, King’s College London, 22 October 2014 – p. 34/37

Schneier: Step 4

What other risks does the security solution
cause?

This question addresses what might be called the
problem of unintended consequences. Security
solutions have ripple effects, and most cause new
security problems. The trick is to understand the
new problems and make sure they are smaller than
the old ones.

APP 03, King’s College London, 22 October 2014 – p. 35/37

Schneier: Step 5

What costs and trade-offs does the security
solution impose?

Every security system has costs and requires
trade-offs. Most security costs money, sometimes
substantial amounts; but other trade-offs may be
more important, ranging from matters of
convenience and comfort to issues involving basic
freedoms like privacy. Understanding these
trade-offs is essential.

APP 03, King’s College London, 22 October 2014 – p. 36/37

