Handout 4 (Access Control)

Access control is essentially about deciding whether to grant access to a re-
source or deny it. Sounds easy, no? Well it turns out that things are not as
simple as they seem at first glance. Let us first look, as a case-study, at how ac-
cess control is organised in Unix-like systems (Windows systems have similar
access controls, although the details might be quite different). Then we have a
look at how secrecy and integrity can be ensured in a system, and finally have
a look at shared access control in multi-agent systems. But before we start, let
us motivate access control systems by the kind of attacks we have seen in the
last lecture.

There are two further general approaches for countering buffer overflow at-
tacks (and other similar attacks). One are Unix-like access controls, which en-
able a particular architecture for network applications, for example web-servers.
This architecture minimises the attack surface that is visible from, for example,
the Internet. And if an attack occurs the architecture attempts to limit the dam-
age. The other approach is to radically minimise the attack surface by running
only the bare essentials on the web-server. In this approach, even the operating
system is eliminated. This approach is called unikernel.

A unikernel is essentially a single, fixed purpose program running on a server.
Nothing else is running on the server, except potentially many instances of this
single program are run concurrently with the help of a hypervisor.! This sin-
gle program implements the functionality the server offers (for example serv-
ing web-pages). The main point is that all the services the operating system
normally provides (network stack, file system, ssh and so on) are not used by
default in unikernels. Instead, the single program uses libraries (the unikernel)
whenever some essential functionality is needed. The developer only needs to
select a minimal set of these libraries in order to implement a server for web-
pages, for example. In this way, ssh, say, is only provided, when it is absolutely
necessary.

Unikernels are a rather recent idea for hardening servers. I have not seen
any production use of this idea, but there are plenty of examples from academia.
The advantage of unikernels is the rather small footprint in terms of mem-
ory, booting times and so on (no big operating system is needed). This al-
lows unikernels to run on low-coast hardware such as Raspberry Pi’s or Cu-
bieboards, where they can replace much more expensive hardware for the same
purpose. The low booting times of unikernels are also an advantage when your
server needs to scale up to higher user-demands. Then it is often possible to
just run another instance of the single program, which can be started almost
instantly without the user seeing any delay (unlike if you have to start, say,
Windows and then on top of that start your network application). One of the
most well-known examples of a unikernel is MirageOS available from
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https://mirage.io

This unikernel is based on the functional programming language Ocaml, which
provides added security (Ocaml does not allow buffer overflow attacks, for ex-
ample). If you want to test the security of MirageOS, the developers issued a
Bitcoin challenge: if you can break into their system at

http://ownme.ipredator.se

you can get 10 Bitcoins. This is approximately £41,000.

However, sometimes you cannot, or do not want to, get rid of the operating
system. In such cases it is still a good idea to minimise the attack surface. For
this it helps if the network application can be split into two parts—an applica-
tion and an interface:

Application Interface
J(dangerous part)
> H Internet
privileged unprivileged
process process

The idea is that all heavy-duty lifting, or dangerous operations, in the applica-
tion (for example database access or writing a file) is done by a privileged pro-
cess. All user input from the internet is received by an unprivileged process,
which is restricted to only receive user input from the Internet and communi-
cates with the privileged process. This communication, however, needs to be
sanitised, meaning any unexpected user-input needs to be rejected. The idea
behind this split is that if an attacker can take control of the unprivileged pro-
cess, then he or she cannot do much damage. However, the split into such priv-
ileged and unprivileged process requires an operating system that supports
Unix-style access controls, which we will look at next.

Unix-Style Access Control

Following the Unix-philosophy that everything is considered as a file, even
memory, ports and so on, access control in Unix is organised around 11 Bits
that specify how a file can be accessed. These Bits are sometimes called the per-
mission attributes of a file. There are typically three modes for access: read, write
and execute. Moreover there are three user groups to which the modes apply:
the owner of the file, the group the file is associated with and everybody else. A
typical permission of a file owned by bob being in the group staff might look
as follows:

- Pr--rw-rwx bob staff
—~

directory user  group  other
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For the moment let us ignore the directory bit. The Unix access rules imply that
Bob will only have read access to this file, even if he is in the group staff and
this group’s access permissions allow read and write. Similarly every member
in the staff group whois not bob, will only have read-write access permissions,
not read-write-execute.

This relatively fine granularity of owner, group, everybody else seems to
cover many useful scenarios of access control. A typical example of some files
with permission attributes is as follows:

$ 1s -1d . * */*

drwxr-xr-x ping staff 32768 Apr 2 2010 .

----r-- ping students 31359 Jul 24 2011 manual.txt
-r--rw--w- bob students 4359 Jul 24 2011 report.txt

5 -rwsr--r-x bob students 141359 Jun 1 2013 microedit

W N =
1
=
=

¢ dr--r-xr-x bob staff 32768 Jul 23 2011 src
7 -rw-r--r-- bob staff 81359 Feb 28 2012 src/code.c
8 -r--rw---- emma students 959 Jan 23 2012 src/code.h

The leading d in Lines 2 and 6 indicate that the file is a directory, whereby
in the Unix-tradition the . points to the directory itself. The .. points at the
directory “above”, or parent directory. The second to fourth letter specify how
the owner of the file can access the file. For example Line 3 states that ping
can read and write manual.txt, but cannot execute it. The next three letters
specify how the group members of the file can access the file. In Line 4, for
example, all students can read and write the file report.txt. Finally the last
three letters specify how everybody else can access a file. This should all be
relatively familiar and straightforward. No?

There are already some special rules for directories and links. If the execute
attribute of a directory is not set, then one cannot change into the directory and
one cannot access any file inside it. If the write attribute is nof set, then one
can change existing files (provided they are changeable), but one cannot create
new files. If the read attribute is not set, one cannot search inside the directory
(1s -1ladoesnot work) but one can access an existing file, provided one knows
its name. Links to files never depend on the permission of the link, but the file
they are pointing to. Otherwise one could easily change access rights to files.

While the above might sound already moderately complicated, the real com-
plications with Unix-style file permissions involve the setuid and setgid at-
tributes. For example the file microedit in Line 5 has the setuid attribute set
(indicated by the s in place of the usual x).

The purpose of setuid and setgid is to solve the following puzzle: The pro-
gram passwd allows users to change their passwords. Therefore passwd needs
to have write access to the file /etc/passwd. But this file cannot be writable
for every user, otherwise anyone can set anyone else’s password. So chang-
ing securely passwords cannot be achieved with the simple Unix access rights
discussed so far. While this situation might look like an anomaly, it is in fact
an often occurring problem. For example looking at current active processes
with /bin/ps requires access to internal data structures of the operating sys-



tem, which only root should have access to. In fact any of the following actions
cannot be configured for single users, but need privileged root access

¢ changing system databases (users, groups, routing tables and so on)
* opening a network port below 1024
¢ interacting with peripheral hardware, such as printers, harddisk etc

* overwriting operating system facilities, like process scheduling and mem-
ory management

This will typically involve quite a lot of programs on a Unix system. I counted
90 programs with the setuid attribute set on my bog-standard Mac OSX sys-
tem (including the program /usr/bin/login). The problem is that if there is
a security problem with only one of them, be it a buffer overflow for example,
then malicious users can gain root access (and for outside attackers it is much
easier to take over a system). Unfortunately it is rather easy to cause a secu-
rity problem since the handling of elevating and dropping access rights in such
programs rests entirely with the programmer.

The fundamental idea behind the setuid attribute is that a file will be able to
run not with the callers access rights, but with the rights of the owner of the file.
So /usr/bin/login will always be running with root access rights, no matter
who invokes this program. The problem is that this entails a rather complicated
semantics of what the identity of a process (that runs the program) is. One
would hope there is only one such ID, but in fact Unix distinguishes three(!):

e real identity
This is the ID of the user who creates the process; can only be changed to
something else by root.

* effective identity
This is the ID that is used to grant or deny access to a resource; can be
changed to either the real identity or saved identity by users, can be changed
to anything by root.

* saved identity
If the setuid bit set in a file then the process is started with the real identity
of the user who started the program, and the identity of the owner of the
program as effective and saved identity. If the setuid bit is not set, then
the saved identity will be the real identity.

As an example consider again the passwd program. When started by, say the
user foo, it has at the beginning the identities:

e real identity: foo
effective identity: foo
saved identity: root



It is then allowed to change the effective identity to the saved identity to have

e real identity: foo
effective identity: root
saved identity: root

It can now read and write the file /etc/passwd. After finishing the job it is
supposed to drop the effective identity back to foo. This is the responsibility
of the programmers who wrote passwd. Notice that the effective identity is not
automatically elevated to root, but the program itself must make this change.
After it has done the work, the effective identity should go back to the real
identity.

If you want to play more with access rights in Unix, you can use the program
in Figure 1. It explicitly checks for readability and writability of files. The main
function is organised into two parts: the first checks readability and writability
with the permissions according to a potential setuid bit, and the second (start-
ing in Line 34) when the permissions are lowered to the caller. Note that this
program has one problem as well: it only gives a reliable answer in cases a file
is not readable or not writable when it returns an error code 13 (permission
denied). It sometimes claims a file is not writable, say, but with an error code
26 (text file busy). This is unrelated to the permissions of the file.

Despite this complicated semantics, Unix-style access control is of no use in
anumber of situations. For example it cannot be used to exclude some subset of
people, but otherwise have files readable by everybody else (say you want to re-
strict access to a file such that your office mates cannot access a file). You could
try setting the group of the file to this subset and then restrict access accord-
ingly. But this does not help, because users can drop membership in groups. If
one needs such fine-grained control over who can access a file, one needs more
powerful mandatory access controls as described next.

Secrecy and Integrity

Often you need to keep information secret within a system or organisation, or
secret from the “outside world”. An example would be to keep insiders from
leaking information to competitors. The secrecy levels used in the military are
an instance of such an access control system. There you distinguish usually
four secrecy levels:

® top secret
® secret

e confidential
e unclassified

The idea is that the secrets classified as top-secret are most closely guarded
and only accessible to people who have a special clearance. The unclassified



1 #include <stdio.h>
2> #include <unistd.h>
3 #include <errno.h>

5 FILE *f; //file pointer

7 //tests return errno = 13 for permission denied
s void read_test(char *name)

o

10 if ((f = fopen(name, "r")) == NULL) {

1 printf("%s is not readable, errno = %d\n", name, errno);
12 } else {

13 printf("%s is readable\n", name); fclose(f);
14 }

5}

16

17 void write_test(char *name)

18 {

19 if ((f = fopen(name, "r+")) == NULL) {

20 printf("%s is not writable, errno = %d\n", name, errno);
21 } else {

2 printf("%s is writable\n", name); fclose(f);
23 }

u}

25

% int main(int argc, char *argv[])

27 A

28 printf("Real UID = %d\n", getuid());

29 printf("Effective UID = %d\n", geteuid());

30

31 read_test(argv[1]);

2 write_test(argv[1]);

33

34 //lowering the access rights to the caller

35 if (setuid(getuid())) {

36 printf("could not reset setuid, errno = %d\n", errno);
37 return 1;

38 }

39

m printf("Real UID = %d\n", getuid());

4 printf("Effective UID = %d\n", geteuid());

42

) read_test(argv[1]);

m write_test(argv[1]);

45

46 return 0;

v}

Figure 1: A read/write test program in C. It returns errno = 13 in cases when
permission is denied.



category is the lowest level not needing any clearance. While the idea behind
these security levels is quite straightforward, there are some interesting phe-
nomenons that you need to think about when realising such a system. First this
kind of access control needs to be mandatory as opposed to discretionary. With
discretionary access control, the users can decide how to restrict or grant access
to resources. With mandatory access control, the access to resources is enforced
“system-wide” and cannot be controlled by the user. There would be no point
to let users set the secrecy level, because if they want to leak information they
would set it to the lowest. Even if there is no malicious intent, it could happen
that somebody by accident sets the secrecy level too low for a document. Note
also that the secrecy levels are in tension with the Unix-style access controls.
There root is allowed to do everything, but in a system enforcing secrecy, you
might not like to give root such powers.

There are also some interesting rules for reading and writing a resource that
need to be enforced:

* Read Rule: a principal P can read a resource O provided P’s security level
is at least as high as O’s

* Write Rule: a principal P can write a resource O provided O’s security
level is at least as high as P’s

The first rule implies that a principal with secret clearance can read secret doc-
uments or lower, but not documents classified top-secret. The second rule for
writing needs to be the other way around: someone with secret clearance can
write secret or top-secret documents—no information is leaked in these cases.
In contrast the principal cannot write confidential documents, because then in-
formation can be leaked to lower levels. These rules about enforcing secrecy
with multi-level clearances are often called Bell/LaPadula model, named after
two people who studied such systems.

A problem with this kind of access control system is when two people want
to talk to each other but are assigned different security clearances, say secret
and confidential. In these situations, the people with the higher clearance have
to lower their security level and are not allowed to take any document from
the higher level with them to the lower level (otherwise information could be
leaked). In actual systems, this might mean that people need to log out and log
into the system again—this time with credentials for the lower level.

While secrecy is one property you often want to enforce, integrity is another.
This property ensures that nobody without adequate clearance can change, or
tamper with, systems. An example for this property is a fire-wall, which isolates
a local system from threads from the Internet, for example. The rule for such a
system is that somebody from inside the fire-wall can write resources outside
the firewall, but you cannot write a resource inside the fire-wall from outside.
Otherwise an outside can just tamper with a system in order to break in. In con-
trast we can read resources from inside the fire-wall, for example web-pages.
But we cannot read anything from outside the fire-wall. Lest we might intro-



duce a virus into the system (behind the fire-wall). In effect in order to ensure
integrity the read and write rules are reversed from the case of secrecy:

¢ Read Rule: a principal P can read a resource O provided P’s security level
is lower or equal than O’s

* Write Rule: a principal P can write a resource O provided O’s security
level is lower or equal than P’s

This kind of access control system is called Biba model, named after Kenneth
Biba. Its purpose is to prevent data modification by unauthorised principals.
The somewhat paradoxical result of the different reading and writing rules
in the Bell/LaPadula and Biba models is that we cannot have secrecy and integrity
at the same time in a system, or they need to be enforced by different means.

Multi-Agent Access Control

In military or banking, for example, very critical decisions need to be made us-
ing a two-people rule. This means such decisions need to be taken by two people
together, so that no single person can defraud a bank or start a nuclear war (you
will know what I mean if you have seen the classic movie “Dr Strangelove or:
How I Learned to Stop Worrying and Love the Bomb”?). Translating the two-
people rule into a software system seems not as straightforward as one might
think.

Let us assume we want to implement a system where CEOs can make deci-
sions on their own, for example whether or not to sell assets, but two managing
directors (MDs) need to come together to make the same decision. If “lowly” di-
rectors (Ds) want to take this decision, three need to come together. Remember
cryptographic keys are just sequences of bits. A naive solution to the problem
above is to split the necessary key into n parts according to the “level” where
the decision is taken. For example one complete key for a CEO, halves of the
key for the MDs and thirds for the Ds. The problem with this kind of sharing a
key is that there might be many hundreds MDs and Ds in your organisations.
Simple-minded halving or division by three of the key just does not work.

A much more clever solution was proposed by Blakley and Shamir in 1979.
This solution is inspired by some simple geometric laws. Suppose a three-
dimensional axis system. We can, clearly, specify a point on the z-axis, say,
by specifying its coordinates. But we could equally specify this point by a line
that intersects the z-axis in this point. How can a line be specified? Well, by
giving two points in space. But as you might remember from school days, we
can specify the point also by a plane intersecting the z-axis and a plane can be
specified by three points in space. This could be pictured as follows:

2h“c’cp://en.wikipedia .org/wiki/Dr._Strangelove
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The idea is to use the points as keys for each level of shared access. The CEO
gets the point directly. The MDs get keys lying on a line and the Ds get keys
lying on the plane. Clever, no? Scaling this idea to more dimensions allows for
even more levels of access control and more interesting access rules, like one
MD and 2 Ds can take a decision together.

Is such a shared access control used in practice? Well military command-
chains are obviously organised like this. But in software systems often need
to rely on data that might not be entirely accurate. So the CEO-level would
correspond to the in-house data-source that you can trust completely. The MD-
level would correspond to simple errors where you need three inputs and you
decide on what to do next according to what at least two data-sources agree (the
third source is then disregarded, because it is assumed it contains an error). If
your data contains not just simple errors, you need levels corresponding to Ds.

Further Information

If you want to know more about the intricacies of the “simple” Unix access
control system you might find the relatively readable paper about “Setuid De-
mystified” useful.

http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf

About secrecy and integrity, and shared access control I recommend to read
the chapters on “Nuclear Command and Control” and “Multi-Level Security”
in Ross Anderson’s Security Engineering book (whose second edition is free).
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