
Access Control and
Privacy Policies (5)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

APP 05, King’s College London – p. 1/25

Protocols
Some examples where “over-the-air” protocols are
used:
wifi
card readers (you cannot trust the terminals)
RFID (passports)
car transponders

The point is that we cannot control the network:
An attacker can install a packet sniffer, inject
packets, modify packets, replay messages…fake
pretty much everything.

APP 05, King’s College London – p. 2/25

Protocols
Some examples where “over-the-air” protocols are
used:
wifi
card readers (you cannot trust the terminals)
RFID (passports)
car transponders

The point is that we cannot control the network:
An attacker can install a packet sniffer, inject
packets, modify packets, replay messages…fake
pretty much everything.

APP 05, King’s College London – p. 2/25

Keyless Car Transponders

There are two security mechanisms: one remote
central locking system and one passive RFID tag
(engine immobiliser).
How can I get in? How can thieves be kept out?
How to avoid MITM attacks?

Papers: Gone in 360 Seconds: Hijacking with Hitag2,
Dismantling Megamos Crypto: Wirelessly Lockpicking

a Vehicle Immobilizer
APP 05, King’s College London – p. 3/25

HTTPS / GSM

I am sitting at Starbuck. How can I be sure I am
really visiting Barclays? I have no control of the
access point.
How can I achieve that a secret key is established
in order to encrypt my mobile conversation? I
have no control over the access points.

APP 05, King’s College London – p. 4/25

Handshakes
starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

A → S: SYN
S → A: SYN-ACK
A → S: ACK

APP 05, King’s College London – p. 5/25

Handshakes
starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

A → S: SYN
S → A: SYN-ACK
A → S: ACK

APP 05, King’s College London – p. 5/25

Handshakes
starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

A → S: SYN
S → A: SYN-ACK
A → S: ACK

APP 05, King’s College London – p. 5/25

SYNflood
attacks:

Authentication

Knock Knock!
Who’s there?
Alice.
Alice who?

APP 05, King’s College London – p. 6/25

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Password transmission:

A → B : KAB

Problems: Eavesdropper can capture the secret
and replay it; B cannot confirm the identity of A

APP 05, King’s College London – p. 7/25

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Password transmission:

A → B : KAB

Problems: Eavesdropper can capture the secret
and replay it; B cannot confirm the identity of A

APP 05, King’s College London – p. 7/25

Authentication Protocols
Alice (A) and Bob (B) share a secret key KAB

Simple Challenge Response (solving the replay
problem):

A → B : Hi I am A
B → A : N (challenge)
A → B : {N}KAB

cannot be replayed since next time will be
another challenge N
B authenticates A, but A does not authenticate B
(Eve can intercept messages from A, send
random challenge and ignore last)

APP 05, King’s College London – p. 8/25

Authentication Protocols
Alice (A) and Bob (B) share a secret key KAB

Simple Challenge Response (solving the replay
problem):

A → B : Hi I am A
B → A : N (challenge)
A → B : {N}KAB

cannot be replayed since next time will be
another challenge N
B authenticates A, but A does not authenticate B
(Eve can intercept messages from A, send
random challenge and ignore last)

APP 05, King’s College London – p. 8/25

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Mutual Challenge Response:

A → B : NA
B → A : {NA, NB}KAB
A → B : NB

But requires shared secret key.

APP 05, King’s College London – p. 9/25

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Mutual Challenge Response:

A → B : NA
B → A : {NA, NB}KAB
A → B : NB

But requires shared secret key.

APP 05, King’s College London – p. 9/25

Nonces
1 I generate a nonce (random number) and send it

to you encrypted with a key we share
2 you increase it by one, encrypt it under a key I

know and send it back to me
I can infer:
you must have received my message
you could only have generated your answer after I
send you my initial message
if only you and me know the key, the message
must have come from you

APP 05, King’s College London – p. 10/25

A → B: NA
B → A: {NA, NB}Kab
A → B: NB

The attack (let A decrypt her own messages):

A → E: NA
E → A: NA
A → E: {NA, N′

A}KAB
E → A: {NA, N′

A}KAB
A → E: N′

A (= NB)

Solutions: KAB ̸= KBA or include an id in the second
message

APP 05, King’s College London – p. 11/25

A → B: NA
B → A: {NA, NB}Kab
A → B: NB

The attack (let A decrypt her own messages):

A → E: NA
E → A: NA
A → E: {NA, N′

A}KAB
E → A: {NA, N′

A}KAB
A → E: N′

A (= NB)

Solutions: KAB ̸= KBA or include an id in the second
message

APP 05, King’s College London – p. 11/25

Encryption to the Rescue?

A → B : {A, NA}KAB encrypted

B → A : {NA, K′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities

APP 05, King’s College London – p. 12/25

Encryption to the Rescue?

A → B : {A, NA}KAB encrypted

B → A : {NA, K′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities

APP 05, King’s College London – p. 12/25

Trusted Third Party

Simple protocol for establishing a secure
connection via a mutually trusted 3rd party
(server):

A → S : A, B
S → A : {KAB}KAS and {{KAB}KBS}KAS
A → B : {KAB}KBS
A → B : {m}KAB

APP 05, King’s College London – p. 13/25

Public-Key Infrastructure

the idea is to have a certificate authority (CA)
you go to the CA to identify yourself
CA: “I, the CA, have verified that public key Ppub

Bob
belongs to Bob”

CA must be trusted by everybody
What happens if CA issues a false certificate?
Who pays in case of loss? (VeriSign explicitly
limits liability to $100.)

APP 05, King’s College London – p. 14/25

Person-in-the-Middle

“Normal” protocol run:

A sends public key to B
B sends public key to A
A sends message encrypted with B’s public key, B
decrypts it with its private key
B sends message encrypted with A’s public key, A
decrypts it with its private key

APP 05, King’s College London – p. 15/25

Person-in-the-Middle

Attack:
A sends public key to B — C intercepts this
message and send his own public key to B
B sends public key to A — C intercepts this
message and send his own public key A
A sends message encrypted with C’s public key, C
decrypts it with its private key, re-encrypts with
B’s public key
similar the other way

APP 05, King’s College London – p. 16/25

Person-in-the-Middle
Prevention:
A sends public key to B
B sends public key to A
A encrypts message with B’s public key, send’s
half of the message to B
B encrypts message with A’s public key, send’s
half of the message back to A
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message

C would have to invent a totally new message

APP 05, King’s College London – p. 17/25

Person-in-the-Middle
Prevention:
A sends public key to B
B sends public key to A
A encrypts message with B’s public key, send’s
half of the message to B
B encrypts message with A’s public key, send’s
half of the message back to A
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message

C would have to invent a totally new message
APP 05, King’s College London – p. 17/25

Car Transponder (HiTag2)
1 C generates a random number r
2 C calculates (F, G) = {r}K
3 C → T: r, F
4 T calculates (F′, G′) = {r}K
5 T checks that F = F′

6 T → C: r, G′

7 C checks that G = G′

This process means that the transponder believes the car
knows the key K, and the car believes the transponder
knows the key K. They have authenticated themselves to
each other.

APP 05, King’s College London – p. 18/25

Car Transponder (HiTag2)
1 C generates a random number r
2 C calculates (F, G) = {r}K
3 C → T: r, F
4 T calculates (F′, G′) = {r}K
5 T checks that F = F′

6 T → C: r, G′

7 C checks that G = G′

This process means that the transponder believes the car
knows the key K, and the car believes the transponder
knows the key K. They have authenticated themselves to
each other.

APP 05, King’s College London – p. 18/25

Person-in-the-Middle

Border Gateway Protocol (BGP) — routers
believe their neighbours
it is possible to advertise bad routes
can be done over continents

http://www.renesys.com/2013/11/mitm-internet-hijacking/

APP 05, King’s College London – p. 19/25

http://www.renesys.com/2013/11/mitm-internet-hijacking/

Protocol Attacks

replay attacks
reflection attacks
man-in-the-middle attacks
timing attacks
parallel session attacks
binding attacks (public key protocols)
changing environment / changing assumptions

(social engineering attacks)

APP 05, King’s College London – p. 20/25

Best Practices

Principle 1: Every message should say what it
means: the interpretation of a message should not
depend on the context.

Principle 2: If the identity of a principal is
essential to the meaning of a message, it is prudent
to mention the principal’s name explicitly in the
message (though difficult).

APP 05, King’s College London – p. 21/25

Best Practices

Principle 1: Every message should say what it
means: the interpretation of a message should not
depend on the context.

Principle 2: If the identity of a principal is
essential to the meaning of a message, it is prudent
to mention the principal’s name explicitly in the
message (though difficult).

APP 05, King’s College London – p. 21/25

Best Practices
Principle 3: Be clear about why encryption is
being done. Encryption is not wholly cheap, and
not asking precisely why it is being done can lead
to redundancy. Encryption is not synonymous
with security.

Possible Uses of Encryption
Preservation of confidentiality: {X}K only those that have
K may recover X.

Guarantee authenticity: The partner is indeed some
particular principal.

Guarantee confidentiality and authenticity: binds two parts
of a message — {X, Y}K is not the same as {X}K and {Y}K.

APP 05, King’s College London – p. 22/25

Best Practices

Principle 4: The protocol designer should know
which trust relations his protocol depends on, and
why the dependence is necessary. The reasons for
particular trust relations being acceptable should
be explicit though they will be founded on
judgment and policy rather than on logic.

Example Certification Authorities: CAs are
trusted to certify a key only after proper steps have
been taken to identify the principal that owns it.

APP 05, King’s College London – p. 23/25

Formal Methods

Ross Anderson about the use of Logic:

Formal methods can be an excellent way of finding bugs
in security protocol designs as they force the designer to
make everything explicit and thus confront difficult
design choices that might otherwise be fudged.

APP 05, King’s College London – p. 24/25

Mid-Term

homework, handouts, programs…

Any Questions?

APP 05, King’s College London – p. 25/25

