Handout 4 (Access Control)

Access control is essentially about deciding whether to grant access to a re-
source or deny it. Sounds easy. No? Well it turns out that things are not as
simple as they seem at first glance. Let us first look, as a case-study, at how ac-
cess control is organised in Unix-like systems (Windows systems have similar
access controls, although the details might be quite different).

Unix-Style Access Control

Following the Unix-philosophy that everything is considered as a file, even
memory, ports and so on, access control in Unix is organised around 11 Bits
that specify how a file can be accessed. These Bits are sometimes called the per-
mission attributes of a file. There are typically three modes for access: read, write
and execute. Moreover there are three user groups to which the modes apply:
the owner of the file, the group the file is associated with and everybody else.
This relatively fine granularity seems to cover many useful scenarios of access
control. A typical example of some files with permission attributes is as follows:
$ 1s -1d . * */*

drwxr-xr-x ping staff 32768 Apr 2 2010 .

-rw----r-- ping students 31359 Jul 24 2011 manual.txt
-r--rw--w- bob students 4359 Jul 24 2011 report.txt
-rwsr--r-x bob students 141359 Jun 1 2013 microedit

® N o e W N e

dr--r-xr-x bob staff 32768 Jul 23 2011 src
-rw-r--r-- bob staff 81359 Feb 28 2012 src/code.c
-r--rw---- emma students 959 Jan 23 2012 src/code.h

The leading d in Lines 2 and 6 indicate that the file is a directory, whereby
in the Unix-tradition the . points to the directory itself. The .. points at the
directory “above”, or parent directory. The second to fourth letter specify how
the owner of the file can access the file. For example Line 3 states that ping
can read and write manual.txt, but cannot execute it. The next three letters
specify how the group members of the file can access the file. In Line 4, for
example, all students can read and write the file report.txt. Finally the last
three letters specify how everybody else can access a file. This should all be
relatively familiar and straightforward. No?

There are already some special rules for directories and links. If the execute
attribute of a directory is not set, then one cannot change into the directory and
one cannot access any file inside it. If the write attribute is not set, then one
can change existing files (provide they are changeable), but one cannot create
new files. If the read attribute is not set, one cannot search inside the directory
(1s -1ladoesnot work) but one can access an existing file, provided one knows
its name. Links to files never depend on the permission of the link, but the file
they are pointing to. Otherwise one could easily change access rights to files.

While the above might sound already moderately complicated, the real com-
plications with Unix-style file permissions involve the setuid and setgid at-
tributes. For example the file microedit in Line 5 has the setuid attribute set



(indicated by the s in place of the usual x). The purpose of setuid and setgid is
to solve the following puzzle: The program passwd allows users to change their
passwords. Therefore passwd needs to have write access to the file /etc/passwd.
But this file cannot be writable for every user, otherwise anyone can set any-
one else’s password. So changing securely passwords cannot be achieved with
the simple Unix access rights discussed so far. While this situation might look
like an anomaly, it is in fact an often occurring problem. For example looking at
current active processes with /bin/ps requires access to internal data structures
of the operating system, which only root should be allowed to. In fact any of
the following actions cannot be configured for single users, but need privileged
root access

¢ changing system databases (users, groups, routing tables and so on)
* opening a network port below 1024
¢ interacting with peripheral hardware, such as printers, harddisk etc

¢ overwriting operating system facilities, like process scheduling and mem-
ory management

This will typically involve quite a lot of programs on a Unix system. I counted
90 programs with the setuid attribute set on my bog-standard Mac OSX system
(including the program /usr/bin/login for example). The problem is that if
there is a security problem with only one of them, be it a buffer overflow for
example, then malicious users can gain root access (and for outside attackers it
is much easier to take over a system). Unfortunately it is rather easy to cause a
security problem since the handling of elevating and dropping access rights in
such programs rests entirely with the programmer.

The fundamental idea behind the setuid attribute is that a file will be able to
run not with the callers access rights, but with the rights of the owner of the file.
So /usr/bin/login will always be running with root access rights, no matter
who invokes this program. The problem is that this entails a rather complicated
semantics of what the identity of a process (that runs the program) is. One
would hope there is only one such ID, but in fact Unix distinguishes three(!):

* real identity
This is the ID of the user who creates the process; can only be changed to
something else by root.

* effective identity
This is the ID that is used to grant or deny access to a resource; can be
changed to either the real identity or saved identity by users, can be changed
to anything by root.

* saved identity
If the setuid bit set in a file then the process is started with the real identity
of the user who started the program, and the identity of the owner of the



program as effective and saved identity. If the setuid bit is not set, then
the saved identity will be the real identity.

As an example consider again the passwd program. When started by, say the
user foo, it has at the beginning the identities:

e real identity: foo
effective identity: foo
saved identity: root

It is then allowed to change the effective identity to the saved identity to have

* real identity: foo
effective identity: root
saved identity: root

It can now read and write the file /etc/passwd. After finishing the job it is
supposed to drop the effective identity back to foo. This is the responsibility
of the programmers who wrote passwd. Notice that the effective identity is not
automatically elevated to root, but the program itself must make this change.
After it has done the work, the effective identity should go back to the real
identity.

Despite this complicated semantics, Unix-style access control is of no use in
anumber of situations. For example it cannot be used to exclude some subset of
people, but otherwise have files readable by everybody else (say you want to re-
strict access to a file such that your office mates cannot access a file). You could
try setting the group of the file to this subset and then restrict access accord-
ingly. But this does not help, because users can drop membership in groups. If
one needs such fine-grained control over who can access a file, one needs more
powerful mandatory access controls as described next.

Secrecy and Integrity

Often you need to keep information secret within a system or organisation, or
secret to the “outside world”. An example would be to keep information secret
such that insiders cannot leak information to competitors. A very good instance
of such an access control system is the secrecy levels used in the military. There
you distinguish four secrecy levels:

® top secret
® secret
¢ confidential

e unclassified



The idea is that the secrets classified as top-secret are most closely guarded
and only accessible to people who have a special clearance. The unclassified
category is the lowest level not needing any clearance. While the idea behind
these security levels is quite straightforward, there are some interesting impli-
cations for when you want to realise such a system. To begin the access control
needs to be mandatory as opposed to discretionary. With discretionary access
control, the users can decide how to restrict or grant access to resources. With
mandatory access control, the access to resources is enforced “system-wide”
and cannot be controlled by the user. There are also some interesting rules for
reading and writing an object that need to be enforced:

* Read Rule: a principal P can read an object O provided P’s security level
is at least as high as O’s

* Write Rule: a principal P can write an object O provided O’s security
level is at least as high as P’s

The first rule says that a principal with secret clearance can read secret docu-
ments or lower, but not documents classified top-secret. The second rule for
writing needs to be the other way around: someone with secret clearance can
write secret or top-secret documents—no information is leaked. In contrast it
cannot write confidential documents, because then information can be leaked
to lower levels. These rules about enforcing secrecy with mult-level clearances
is often called Bell/LaPudela model, named after two people who studied such
systems.

A problem with this access control system is when two people want to talk to
each other but having different security clearances, say secret and confidential.

While secrecy is one property you often want to enforce, integrity is another.
This property ensures that no

Further Information

If you want to know more about the intricacies of the “simple” Unix access
control system you might find the relatively readable paper about “Setuid De-
mystified” useful.

http://www.cs.berkeley.edu/~daw/papers/setuid-usenix@02.pdf


http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf

