
Access Control and
Privacy Policies (5)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)
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Satan’s Computer

Ross Anderson and Roger Needham wrote:

In effect, our task is to program a computer
which gives answers which are subtly and
maliciously wrong at the most inconvenient
possible moment. . . we hope that the lessons
learned from programming Satan’s computer may
be helpful in tackling the more common problem
of programming Murphy’s.
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Protocol Specifications

The Needham-Schroeder Protocol:

Message 1 A→ S : A,B,NA

Message 2 S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

Message 3 A→ B : {KAB, A}KBS

Message 4 B → A : {NB}KAB

Message 5 A→ B : {NB − 1}KAB
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Cryptographic Protocol
Failures

Again Ross Anderson and Roger Needham wrote:

A lot of the recorded frauds were the result of
this kind of blunder, or from management
negligence pure and simple. However, there have
been a significant number of cases where the
designers protected the right things, used
cryptographic algorithms which were not broken,
and yet found that their systems were still
successfully attacked.
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The Access Control Problem

access
request

granted/
not granted

Access
Control
Checker

some rules
(access policy)
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Access Control Logic

Ross Anderson about the use of Logic:

Formal methods can be an excellent way of
finding bugs in security protocol designs as they
force the designer to make everything explicit
and thus confront difficult design choices that
might otherwise be fudged.
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access
request

granted/
not granted

Access
Control
Checker

access policy

Assuming one file on my computer contains a virus.
Q: Given my access policy, can this file “infect” my
whole computer?
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access
request

granted/
not granted

Access
Control
Checker

access policy

Assuming one file on my computer contains a virus.
Q: Can my access policy prevent that my whole
computer gets infected.
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. . .
is_at_library (Christian)
is_student (a) ∧ is_at_library (a)⇒ may_obtain_email (a)
is_staff (a) ∧ is_at_library (a)⇒ may_obtain_email (a)

HoD says is_staff (a)⇒ is_staff (a)
HoD says is_staff (Christian)

may_obtain_email (a) ∧ sending_spam (a)⇒
¬ may_obtain_email (a)

? may_obtain_email (Christian)
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There are two ways for tackling such problems:

either you make up our own language in which you
can describe the problem,

or you use an existing language and represent the
problem in this language.
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Logic(s)
Formulas

F ::= true
| false
| F ∧ F
| F ∨ F
| F⇒ F implies
| ¬ F negation
| p (t1,...,tn) predicates

| ∀ x. F forall quantification
| ∃ x. F exists quantification
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1 abstract class Term
2 case class Var(s: String) extends Term
3 case class Consts(s: String) extends Term
4 case class Fun(s: String, ts: List[Term]) extends Term
5

6 abstract class Form
7 case object True extends Form
8 case object False extends Form
9 case class And(f1: Form, f2: Form) extends Form

10 case class Or(f1: Form, f2: Form) extends Form
11 case class Imp(f1: Form, f2: Form) extends Form
12 case class Neg(f: Form) extends Form
13 case class Pred(s: String, ts: List[Term]) extends Form
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Judgements

Γ ` F
Γ is a collection of formulas, called the
assumptions

Example
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Judgements

Γ ` F
Γ is a collection of formulas, called the
assumptions

Example
is_staff (Alice)
is_staff (Christian)
is_at_library (Christian)
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

may_obtain_email (Alice)
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1 abstract class Term
2 case class Var(s: String) extends Term
3 case class Consts(s: String) extends Term
4 case class Fun(s: String, ts: List[Term]) extends Term
5

6 abstract class Form
7 case object True extends Form
8 case object False extends Form
9 case class And(f1: Form, f2: Form) extends Form

10 case class Or(f1: Form, f2: Form) extends Form
11 case class Imp(f1: Form, f2: Form) extends Form
12 case class Neg(f: Form) extends Form
13 case class Pred(s: String, ts: List[Term]) extends Form
14

15 case class Judgement(Gamma: List[Form], F: Form) {
16 def lhs = Gamma
17 def rhs = F
18 }
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Inference Rules

premise1 ... premisen
conclusion

The conlusion and premises are judgements

Examples
Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

Γ ` F1

Γ ` F1 ∨ F2

Γ ` F2

Γ ` F1 ∨ F2
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Implication

Γ, F1 ` F2

Γ ` F1⇒ F2

Γ ` F1⇒ F2 Γ ` F1

Γ ` F2

APP 05, King’s College London, 23 October 2012 – p. 15/44



Universal Quantification

Γ ` ∀ x. F
Γ ` F[x := t]
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Start Rules / Axioms
if F ∈ Γ

Γ ` F

Also written as:

Γ, F ` F

Γ ` true
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Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)
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Γ ` is_staff (Christian) Γ ` is_at_library (Christian)
Γ ` is_staff (Christian) ∧ is_at_library (Christian)

Γ ` ∀ x. is_staff (x) ∧ is_at_library (x)⇒ may_obtain_email (x)
Γ ` is_staff (Christian) ∧ is_at_library (Christian)

⇒ may_obtain_email (Christian)

...
...

Γ ` may_obtain_email (Christian)



Access Control

Γ ` F

If there is a proof⇒ yes (granted)
If there isn’t⇒ no (denied)

Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

Γ 6` may_obtain_email (Alice)
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The Access Control Problem

access
request
(F )

granted/
not granted

Access
Control
Checker

Access Policy (Γ)
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Bad News

We introduced (roughly) first-order logic.

Judgements
Γ ` F

are in general undecidable.

The problem is semi-decidable.
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Access Control Logic
F ::= true
| false
| F ∧ F
| F ∨ F
| F⇒ F
| p (t1,...,tn)
| P says F “saying predicate”

where P ::= Alice, Bob, Christian, ... (principals)

HoD says is_staff (Christian)

APP 05, King’s College London, 23 October 2012 – p. 22/44



Access Control Logic
F ::= true
| false
| F ∧ F
| F ∨ F
| F⇒ F
| p (t1,...,tn)
| P says F “saying predicate”

where P ::= Alice, Bob, Christian, ... (principals)

HoD says is_staff (Christian)

APP 05, King’s College London, 23 October 2012 – p. 22/44



1 abstract class Term
2 case class Var(s: String) extends Term
3 case class Consts(s: String) extends Term
4 case class Fun(s: String, ts: List[Term]) extends Term
5

6 abstract class Form
7 case object True extends Form
8 case object False extends Form
9 case class And(f1: Form, f2: Form) extends Form

10 case class Or(f1: Form, f2: Form) extends Form
11 case class Imp(f1: Form, f2: Form) extends Form
12 case class Neg(f: Form) extends Form
13 case class Pred(s: String, ts: List[Term]) extends Form
14 case class Says(s: String, f: Form) extends Form
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Rules about Says

Γ ` F
Γ ` P says F

Γ ` P says (F1⇒ F2) Γ ` P says F1

Γ ` P says F2

Γ ` P says (P says F)
Γ ` P says F
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Consider the following scenario:

If Admin says that file1 should be deleted, then
this file must be deleted.
Admin trusts Bob to decide whether file1 should
be deleted.
Bob wants to delete file1.

Γ =
(Admin says del_file1)⇒ del_file1,
(Admin says ((Bob says del_file1)⇒ del_file1)),
Bob says del_file1

Γ ` del_file1
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Γ ` F
Γ ` P says F

Γ ` P says (F1⇒ F2) Γ ` P says F1

Γ ` P says F2

Γ =
(Admin says del_file1)⇒ del_file1,
(Admin says ((Bob says del_file1)⇒ del_file1)),
Bob says del_file1

Γ ` del_file1
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Γ ` Bob says del_file
Γ ` Admin says (Bob says del_file)︸ ︷︷ ︸

X

Γ ` Admin says (Bob says del_file⇒ del_file)
...
X

Γ ` Admin says del_file︸ ︷︷ ︸
Y

Γ ` (Admin says del_file)⇒ del_file
...
Y

Γ ` del_file
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Controls

P controls F≡ (P says F)⇒ F

its meaning “P is entitled to do F”

if P controls F and P says F then F

Γ ` P controls F Γ ` P says F
Γ ` F

Γ ` (P says F)⇒ F Γ ` P says F
Γ ` F
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Speaks For

P 7→ Q≡ ∀ F. (P says F)⇒ (Q says F)

its meaning “P speaks for Q”

Γ ` P 7→ Q Γ ` P says F
Γ ` Q says F

Γ ` P 7→ Q Γ ` Q controls F
Γ ` P controls F

Γ ` P 7→ Q Γ ` Q 7→ R
Γ ` P 7→ R
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Tickets
Tickets control access to restricted objects.

Example: Permitted (Bob, enter_flight) ?

Bob says Permitted (Bob, enter_flight)
(access request)

Ticket says (Bob controls Permitted (Bob, enter_flight))

Airline controls (Bob controls Permitted (Bob, enter_flight))
(access policy)

Ticket 7→ Airline
(trust assumption)
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Tickets

1 Bob says Permitted (Bob, enter_flight)

2 Ticket says (Bob controls Permitted (Bob, enter_flight))

3 Airline controls (Bob controls Permitted (Bob, enter_flight))

4 Ticket 7→ Airline

Is Γ ` Permitted (Bob, enter_flight) derivable ?

Γ ` P controls F Γ ` P says F
Γ ` F

Γ ` P 7→ Q Γ ` P says F
Γ ` Q says F
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Tickets
Access Request:

Person says Object

Ticket:

Ticket says (Person controls Object)

Access policy:

Authority controls (Person controls Object)

Trust assumption:

Ticket 7→ Authority
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Derived Rule for Tickets

Authority controls (Person controls F)
Ticket says (Person controls F)
Ticket 7→ Authority
Person says F

F

Γ ` P controls F Γ ` P says F
Γ ` F

Γ ` P 7→ Q Γ ` P says F
Γ ` Q says F
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Security Levels

Top secret (TS)

Secret (S)

Public (P )

slev(P ) < slev(S) < slev(TS)

Bob has a clearance for “secret”

Bob can read documents that are public or sectret, but not
top secret
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Reading a File

Bob controls Permitted (File, read)
Bob says Permitted (File, read)

Permitted (File, read)
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Reading a File

slev(File) < slev(Bob)⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) < slev(Bob)

Permitted (File, read)
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Reading a File

slev(File) < slev(Bob)⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = S
slev(P ) < slev(S)

Permitted (File, read)
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Substitution Rule

Γ ` slev(P ) = l1 Γ ` slev(Q) = l2 Γ ` l1 < l2
Γ ` slev(P ) < slev(Q)

slev(Bob) = S

slev(File) = P

slev(P ) < slev(S)

APP 05, King’s College London, 23 October 2012 – p. 36/44



Substitution Rule

Γ ` slev(P ) = l1 Γ ` slev(Q) = l2 Γ ` l1 < l2
Γ ` slev(P ) < slev(Q)

slev(Bob) = S

slev(File) = P

slev(P ) < slev(S)

APP 05, King’s College London, 23 October 2012 – p. 36/44



Reading a File

slev(File) < slev(Bob)⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
?

Permitted (File, read)
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Reading a File

slev(File) < slev(Bob)⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)
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Transitivity Rule

Γ ` l1 < l2 Γ ` l2 < l3
Γ ` l1 < l3

slev(P ) < slev(S)

slev(S) < slev(TS)

slev(P ) < slev(TS)
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Reading Files
Access policy for reading

∀f. slev(f) < slev(Bob)⇒
Bob controls Permitted (f , read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)
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Reading Files
Access policy for reading

∀f. slev(f)≤ slev(Bob)⇒
Bob controls Permitted (f , read)

Bob says Permitted (File, read)
slev(File) = TS
slev(Bob) = TS
slev(P ) < slev(S)
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Writing Files
Access policy for writing

∀f. slev(Bob)≤ slev(f)⇒
Bob controls Permitted (f , write)

Bob says Permitted (File, write)
slev(File) = TS
slev(Bob) = S
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, write)
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Bell-LaPadula

Read Rule: A principal P can read an object O if and only if
P ’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P ’s.

Meta-Rule: All principals in a system should have a
sufficiently high security level in order to access an object.

This restricts information flow⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’
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Principle of
Least Privilege

A principal should have as few privileges as
possible to access a resource.

Bob (TS) and Alice (S) want to communicate

⇒ Bob should lower his security level
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Biba Policy
Data Integrity (rather than data confidentiality)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only if
P ’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P ’s.

E.g. Generals write orders to officers; officers write oders
to solidiers
Firewall: you can read from inside the firewall, but not from
outside
Phishing: you can look at an approved PDF, but not one from a
random email
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Point to Take Home

Formal methods can be an excellent way of
finding bugs as they force the designer to make
everything explicit and thus confront difficult
design choices that might otherwise be fudged.
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