
Access Control and
Privacy Policies (5)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

APP 05, King’s College London, 23 October 2012 – p. 1/44



Satan’s Computer

Ross Anderson and Roger Needham wrote:

In effect, our task is to program a computer
which gives answers which are subtly and
maliciously wrong at the most inconvenient
possible moment. . . we hope that the lessons
learned from programming Satan’s computer may
be helpful in tackling the more common problem
of programming Murphy’s.

APP 05, King’s College London, 23 October 2012 – p. 2/44



Protocol Specifications

The Needham-Schroeder Protocol:

Message 1 A→ S : A,B,NA

Message 2 S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

Message 3 A→ B : {KAB, A}KBS

Message 4 B → A : {NB}KAB

Message 5 A→ B : {NB − 1}KAB

APP 05, King’s College London, 23 October 2012 – p. 3/44



Cryptographic Protocol
Failures

Again Ross Anderson and Roger Needham wrote:

A lot of the recorded frauds were the result of
this kind of blunder, or from management
negligence pure and simple. However, there have
been a significant number of cases where the
designers protected the right things, used
cryptographic algorithms which were not broken,
and yet found that their systems were still
successfully attacked.

APP 05, King’s College London, 23 October 2012 – p. 4/44



The Access Control Problem

access
request

granted/
not granted

Access
Control
Checker

some rules
(access policy)

APP 05, King’s College London, 23 October 2012 – p. 5/44



Access Control Logic

Ross Anderson about the use of Logic:

Formal methods can be an excellent way of
finding bugs in security protocol designs as they
force the designer to make everything explicit
and thus confront difficult design choices that
might otherwise be fudged.

APP 05, King’s College London, 23 October 2012 – p. 6/44



access
request

granted/
not granted

Access
Control
Checker

access policy

Assuming one file on my computer contains a virus.
Q: Given my access policy, can this file “infect” my
whole computer?

APP 05, King’s College London, 23 October 2012 – p. 7/44



access
request

granted/
not granted

Access
Control
Checker

access policy

Assuming one file on my computer contains a virus.
Q: Can my access policy prevent that my whole
computer gets infected.

APP 05, King’s College London, 23 October 2012 – p. 7/44



. . .
is_at_library (Christian)
is_student (a) ∧ is_at_library (a)⇒ may_obtain_email (a)
is_staff (a) ∧ is_at_library (a)⇒ may_obtain_email (a)

HoD says is_staff (a)⇒ is_staff (a)
HoD says is_staff (Christian)

may_obtain_email (a) ∧ sending_spam (a)⇒
¬ may_obtain_email (a)

? may_obtain_email (Christian)

APP 05, King’s College London, 23 October 2012 – p. 8/44



. . .
is_at_library (Christian)
is_student (a) ∧ is_at_library (a)⇒ may_obtain_email (a)
is_staff (a) ∧ is_at_library (a)⇒ may_obtain_email (a)

HoD says is_staff (a)⇒ is_staff (a)
HoD says is_staff (Christian)

may_obtain_email (a) ∧ sending_spam (a)⇒
¬ may_obtain_email (a)

? may_obtain_email (Christian)

APP 05, King’s College London, 23 October 2012 – p. 8/44



. . .
is_at_library (Christian)
is_student (a) ∧ is_at_library (a)⇒ may_obtain_email (a)
is_staff (a) ∧ is_at_library (a)⇒ may_obtain_email (a)

HoD says is_staff (a)⇒ is_staff (a)
HoD says is_staff (Christian)

may_obtain_email (a) ∧ sending_spam (a)⇒
¬ may_obtain_email (a)

? may_obtain_email (Christian)

APP 05, King’s College London, 23 October 2012 – p. 8/44



There are two ways for tackling such problems:

either you make up our own language in which you
can describe the problem,

or you use an existing language and represent the
problem in this language.

APP 05, King’s College London, 23 October 2012 – p. 9/44



Logic(s)
Formulas

F ::= true
| false
| F ∧ F
| F ∨ F
| F⇒ F implies
| ¬ F negation
| p (t1,...,tn) predicates

| ∀ x. F forall quantification
| ∃ x. F exists quantification

APP 05, King’s College London, 23 October 2012 – p. 10/44

Terms t ::= x ... | c ...



Logic(s)
Formulas

F ::= true
| false
| F ∧ F
| F ∨ F
| F⇒ F implies
| ¬ F negation
| p (t1,...,tn) predicates
| ∀ x. F forall quantification
| ∃ x. F exists quantification

APP 05, King’s College London, 23 October 2012 – p. 10/44

Terms t ::= x ... | c ...



1 abstract class Term
2 case class Var(s: String) extends Term
3 case class Consts(s: String) extends Term
4 case class Fun(s: String, ts: List[Term]) extends Term
5

6 abstract class Form
7 case object True extends Form
8 case object False extends Form
9 case class And(f1: Form, f2: Form) extends Form

10 case class Or(f1: Form, f2: Form) extends Form
11 case class Imp(f1: Form, f2: Form) extends Form
12 case class Neg(f: Form) extends Form
13 case class Pred(s: String, ts: List[Term]) extends Form

APP 05, King’s College London, 23 October 2012 – p. 11/44



Judgements

Γ ` F
Γ is a collection of formulas, called the
assumptions

Example

APP 05, King’s College London, 23 October 2012 – p. 12/44



Judgements

Γ ` F
Γ is a collection of formulas, called the
assumptions

Example
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

` may_obtain_email (Christian)

APP 05, King’s College London, 23 October 2012 – p. 12/44



Judgements

Γ ` F
Γ is a collection of formulas, called the
assumptions

Example
is_staff (Christian)
is_at_library (Christian)
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

may_obtain_email (Christian)

APP 05, King’s College London, 23 October 2012 – p. 12/44



Judgements

Γ ` F
Γ is a collection of formulas, called the
assumptions

Example
is_staff (Alice)
is_staff (Christian)
is_at_library (Christian)
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

may_obtain_email (Alice)

APP 05, King’s College London, 23 October 2012 – p. 12/44



1 abstract class Term
2 case class Var(s: String) extends Term
3 case class Consts(s: String) extends Term
4 case class Fun(s: String, ts: List[Term]) extends Term
5

6 abstract class Form
7 case object True extends Form
8 case object False extends Form
9 case class And(f1: Form, f2: Form) extends Form

10 case class Or(f1: Form, f2: Form) extends Form
11 case class Imp(f1: Form, f2: Form) extends Form
12 case class Neg(f: Form) extends Form
13 case class Pred(s: String, ts: List[Term]) extends Form
14

15 case class Judgement(Gamma: List[Form], F: Form) {
16 def lhs = Gamma
17 def rhs = F
18 }

APP 05, King’s College London, 23 October 2012 – p. 13/44



Inference Rules

premise1 ... premisen
conclusion

The conlusion and premises are judgements

Examples
Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

Γ ` F1

Γ ` F1 ∨ F2

Γ ` F2

Γ ` F1 ∨ F2

APP 05, King’s College London, 23 October 2012 – p. 14/44



Inference Rules

premise1 ... premisen
conclusion

The conlusion and premises are judgements

Examples
Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

Γ ` F1

Γ ` F1 ∨ F2

Γ ` F2

Γ ` F1 ∨ F2

APP 05, King’s College London, 23 October 2012 – p. 14/44



Inference Rules

premise1 ... premisen
conclusion

The conlusion and premises are judgements

Examples
Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

Γ ` F1

Γ ` F1 ∨ F2

Γ ` F2

Γ ` F1 ∨ F2

APP 05, King’s College London, 23 October 2012 – p. 14/44



Implication

Γ, F1 ` F2

Γ ` F1⇒ F2

Γ ` F1⇒ F2 Γ ` F1

Γ ` F2

APP 05, King’s College London, 23 October 2012 – p. 15/44



Universal Quantification

Γ ` ∀ x. F
Γ ` F[x := t]

APP 05, King’s College London, 23 October 2012 – p. 16/44



Start Rules / Axioms
if F ∈ Γ

Γ ` F

Also written as:

Γ, F ` F

Γ ` true

APP 05, King’s College London, 23 October 2012 – p. 17/44



Start Rules / Axioms
if F ∈ Γ

Γ ` F

Also written as:

Γ, F ` F

Γ ` true

APP 05, King’s College London, 23 October 2012 – p. 17/44



Start Rules / Axioms
if F ∈ Γ

Γ ` F

Also written as:

Γ, F ` F

Γ ` true
APP 05, King’s College London, 23 October 2012 – p. 17/44



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

APP 05, King’s College London, 23 October 2012 – p. 18/44



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

APP 05, King’s College London, 23 October 2012 – p. 18/44

Γ ` is_staff (Christian) Γ ` is_at_library (Christian)



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

APP 05, King’s College London, 23 October 2012 – p. 18/44

Γ ` is_staff (Christian) Γ ` is_at_library (Christian)
Γ ` is_staff (Christian) ∧ is_at_library (Christian)



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

APP 05, King’s College London, 23 October 2012 – p. 18/44

Γ ` is_staff (Christian) Γ ` is_at_library (Christian)
Γ ` is_staff (Christian) ∧ is_at_library (Christian)

Γ ` ∀ x. is_staff (x) ∧ is_at_library (x)⇒ may_obtain_email (x)



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

APP 05, King’s College London, 23 October 2012 – p. 18/44

Γ ` is_staff (Christian) Γ ` is_at_library (Christian)
Γ ` is_staff (Christian) ∧ is_at_library (Christian)

Γ ` ∀ x. is_staff (x) ∧ is_at_library (x)⇒ may_obtain_email (x)
Γ ` is_staff (Christian) ∧ is_at_library (Christian)

⇒ may_obtain_email (Christian)



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

APP 05, King’s College London, 23 October 2012 – p. 18/44

Γ ` is_staff (Christian) Γ ` is_at_library (Christian)
Γ ` is_staff (Christian) ∧ is_at_library (Christian)

Γ ` ∀ x. is_staff (x) ∧ is_at_library (x)⇒ may_obtain_email (x)
Γ ` is_staff (Christian) ∧ is_at_library (Christian)

⇒ may_obtain_email (Christian)

...
...

Γ ` may_obtain_email (Christian)



Access Control

Γ ` F

If there is a proof⇒ yes (granted)
If there isn’t⇒ no (denied)

Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

Γ 6` may_obtain_email (Alice)

APP 05, King’s College London, 23 October 2012 – p. 19/44



Access Control

Γ ` F

If there is a proof⇒ yes (granted)
If there isn’t⇒ no (denied)

Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x)⇒ may_obtain_email (x)

Γ 6` may_obtain_email (Alice)

APP 05, King’s College London, 23 October 2012 – p. 19/44



The Access Control Problem

access
request
(F )

granted/
not granted

Access
Control
Checker

Access Policy (Γ)

APP 05, King’s College London, 23 October 2012 – p. 20/44



Bad News

We introduced (roughly) first-order logic.

Judgements
Γ ` F

are in general undecidable.

The problem is semi-decidable.

APP 05, King’s College London, 23 October 2012 – p. 21/44



Bad News

We introduced (roughly) first-order logic.

Judgements
Γ ` F

are in general undecidable.

The problem is semi-decidable.

APP 05, King’s College London, 23 October 2012 – p. 21/44



Bad News

We introduced (roughly) first-order logic.

Judgements
Γ ` F

are in general undecidable.

The problem is semi-decidable.

APP 05, King’s College London, 23 October 2012 – p. 21/44



Access Control Logic
F ::= true
| false
| F ∧ F
| F ∨ F
| F⇒ F
| p (t1,...,tn)
| P says F “saying predicate”

where P ::= Alice, Bob, Christian, ... (principals)

HoD says is_staff (Christian)

APP 05, King’s College London, 23 October 2012 – p. 22/44



Access Control Logic
F ::= true
| false
| F ∧ F
| F ∨ F
| F⇒ F
| p (t1,...,tn)
| P says F “saying predicate”

where P ::= Alice, Bob, Christian, ... (principals)

HoD says is_staff (Christian)

APP 05, King’s College London, 23 October 2012 – p. 22/44



1 abstract class Term
2 case class Var(s: String) extends Term
3 case class Consts(s: String) extends Term
4 case class Fun(s: String, ts: List[Term]) extends Term
5

6 abstract class Form
7 case object True extends Form
8 case object False extends Form
9 case class And(f1: Form, f2: Form) extends Form

10 case class Or(f1: Form, f2: Form) extends Form
11 case class Imp(f1: Form, f2: Form) extends Form
12 case class Neg(f: Form) extends Form
13 case class Pred(s: String, ts: List[Term]) extends Form
14 case class Says(s: String, f: Form) extends Form

APP 05, King’s College London, 23 October 2012 – p. 23/44



Rules about Says

Γ ` F
Γ ` P says F

Γ ` P says (F1⇒ F2) Γ ` P says F1

Γ ` P says F2

Γ ` P says (P says F)
Γ ` P says F

APP 05, King’s College London, 23 October 2012 – p. 24/44



Consider the following scenario:

If Admin says that file1 should be deleted, then
this file must be deleted.
Admin trusts Bob to decide whether file1 should
be deleted.
Bob wants to delete file1.

Γ =
(Admin says del_file1)⇒ del_file1,
(Admin says ((Bob says del_file1)⇒ del_file1)),
Bob says del_file1

Γ ` del_file1

APP 05, King’s College London, 23 October 2012 – p. 25/44



Consider the following scenario:

If Admin says that file1 should be deleted, then
this file must be deleted.
Admin trusts Bob to decide whether file1 should
be deleted.
Bob wants to delete file1.

Γ =
(Admin says del_file1)⇒ del_file1,
(Admin says ((Bob says del_file1)⇒ del_file1)),
Bob says del_file1

Γ ` del_file1

APP 05, King’s College London, 23 October 2012 – p. 25/44



Consider the following scenario:

If Admin says that file1 should be deleted, then
this file must be deleted.
Admin trusts Bob to decide whether file1 should
be deleted.
Bob wants to delete file1.

Γ =
(Admin says del_file1)⇒ del_file1,
(Admin says ((Bob says del_file1)⇒ del_file1)),
Bob says del_file1

Γ ` del_file1

APP 05, King’s College London, 23 October 2012 – p. 25/44



Γ ` F
Γ ` P says F

Γ ` P says (F1⇒ F2) Γ ` P says F1

Γ ` P says F2

Γ =
(Admin says del_file1)⇒ del_file1,
(Admin says ((Bob says del_file1)⇒ del_file1)),
Bob says del_file1

Γ ` del_file1

APP 05, King’s College London, 23 October 2012 – p. 26/44



Γ ` Bob says del_file
Γ ` Admin says (Bob says del_file)︸ ︷︷ ︸

X

Γ ` Admin says (Bob says del_file⇒ del_file)
...
X

Γ ` Admin says del_file︸ ︷︷ ︸
Y

Γ ` (Admin says del_file)⇒ del_file
...
Y

Γ ` del_file

APP 05, King’s College London, 23 October 2012 – p. 27/44



Controls

P controls F≡ (P says F)⇒ F

its meaning “P is entitled to do F”

if P controls F and P says F then F

Γ ` P controls F Γ ` P says F
Γ ` F

Γ ` (P says F)⇒ F Γ ` P says F
Γ ` F

APP 05, King’s College London, 23 October 2012 – p. 28/44



Controls

P controls F≡ (P says F)⇒ F

its meaning “P is entitled to do F”

if P controls F and P says F then F

Γ ` P controls F Γ ` P says F
Γ ` F

Γ ` (P says F)⇒ F Γ ` P says F
Γ ` F

APP 05, King’s College London, 23 October 2012 – p. 28/44



Controls

P controls F≡ (P says F)⇒ F

its meaning “P is entitled to do F”

if P controls F and P says F then F

Γ ` P controls F Γ ` P says F
Γ ` F

Γ ` (P says F)⇒ F Γ ` P says F
Γ ` F

APP 05, King’s College London, 23 October 2012 – p. 28/44



Speaks For

P 7→ Q≡ ∀ F. (P says F)⇒ (Q says F)

its meaning “P speaks for Q”

Γ ` P 7→ Q Γ ` P says F
Γ ` Q says F

Γ ` P 7→ Q Γ ` Q controls F
Γ ` P controls F

Γ ` P 7→ Q Γ ` Q 7→ R
Γ ` P 7→ R

APP 05, King’s College London, 23 October 2012 – p. 29/44



Speaks For

P 7→ Q≡ ∀ F. (P says F)⇒ (Q says F)

its meaning “P speaks for Q”

Γ ` P 7→ Q Γ ` P says F
Γ ` Q says F

Γ ` P 7→ Q Γ ` Q controls F
Γ ` P controls F

Γ ` P 7→ Q Γ ` Q 7→ R
Γ ` P 7→ R

APP 05, King’s College London, 23 October 2012 – p. 29/44



Tickets
Tickets control access to restricted objects.

Example: Permitted (Bob, enter_flight) ?

Bob says Permitted (Bob, enter_flight)
(access request)

Ticket says (Bob controls Permitted (Bob, enter_flight))

Airline controls (Bob controls Permitted (Bob, enter_flight))
(access policy)

Ticket 7→ Airline
(trust assumption)

APP 05, King’s College London, 23 October 2012 – p. 30/44



Tickets
Tickets control access to restricted objects.

Example: Permitted (Bob, enter_flight) ?

Bob says Permitted (Bob, enter_flight)
(access request)

Ticket says (Bob controls Permitted (Bob, enter_flight))

Airline controls (Bob controls Permitted (Bob, enter_flight))
(access policy)

Ticket 7→ Airline
(trust assumption)

APP 05, King’s College London, 23 October 2012 – p. 30/44



Tickets

1 Bob says Permitted (Bob, enter_flight)

2 Ticket says (Bob controls Permitted (Bob, enter_flight))

3 Airline controls (Bob controls Permitted (Bob, enter_flight))

4 Ticket 7→ Airline

Is Γ ` Permitted (Bob, enter_flight) derivable ?

Γ ` P controls F Γ ` P says F
Γ ` F

Γ ` P 7→ Q Γ ` P says F
Γ ` Q says F

APP 05, King’s College London, 23 October 2012 – p. 31/44



Tickets
Access Request:

Person says Object

Ticket:

Ticket says (Person controls Object)

Access policy:

Authority controls (Person controls Object)

Trust assumption:

Ticket 7→ Authority

APP 05, King’s College London, 23 October 2012 – p. 32/44



Derived Rule for Tickets

Authority controls (Person controls F)
Ticket says (Person controls F)
Ticket 7→ Authority
Person says F

F

Γ ` P controls F Γ ` P says F
Γ ` F

Γ ` P 7→ Q Γ ` P says F
Γ ` Q says F

APP 05, King’s College London, 23 October 2012 – p. 33/44



Security Levels

Top secret (TS)

Secret (S)

Public (P )

slev(P ) < slev(S) < slev(TS)

Bob has a clearance for “secret”

Bob can read documents that are public or sectret, but not
top secret

APP 05, King’s College London, 23 October 2012 – p. 34/44



Security Levels

Top secret (TS)

Secret (S)

Public (P )

slev(P ) < slev(S) < slev(TS)

Bob has a clearance for “secret”

Bob can read documents that are public or sectret, but not
top secret

APP 05, King’s College London, 23 October 2012 – p. 34/44



Reading a File

Bob controls Permitted (File, read)
Bob says Permitted (File, read)

Permitted (File, read)

APP 05, King’s College London, 23 October 2012 – p. 35/44



Reading a File

slev(File) < slev(Bob)⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) < slev(Bob)

Permitted (File, read)

APP 05, King’s College London, 23 October 2012 – p. 35/44



Reading a File

slev(File) < slev(Bob)⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = S
slev(P ) < slev(S)

Permitted (File, read)

APP 05, King’s College London, 23 October 2012 – p. 35/44



Substitution Rule

Γ ` slev(P ) = l1 Γ ` slev(Q) = l2 Γ ` l1 < l2
Γ ` slev(P ) < slev(Q)

slev(Bob) = S

slev(File) = P

slev(P ) < slev(S)

APP 05, King’s College London, 23 October 2012 – p. 36/44



Substitution Rule

Γ ` slev(P ) = l1 Γ ` slev(Q) = l2 Γ ` l1 < l2
Γ ` slev(P ) < slev(Q)

slev(Bob) = S

slev(File) = P

slev(P ) < slev(S)

APP 05, King’s College London, 23 October 2012 – p. 36/44



Reading a File

slev(File) < slev(Bob)⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
?

Permitted (File, read)

APP 05, King’s College London, 23 October 2012 – p. 37/44



Reading a File

slev(File) < slev(Bob)⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

APP 05, King’s College London, 23 October 2012 – p. 37/44



Transitivity Rule

Γ ` l1 < l2 Γ ` l2 < l3
Γ ` l1 < l3

slev(P ) < slev(S)

slev(S) < slev(TS)

slev(P ) < slev(TS)

APP 05, King’s College London, 23 October 2012 – p. 38/44



Reading Files
Access policy for reading

∀f. slev(f) < slev(Bob)⇒
Bob controls Permitted (f , read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

APP 05, King’s College London, 23 October 2012 – p. 39/44



Reading Files
Access policy for reading

∀f. slev(f)≤ slev(Bob)⇒
Bob controls Permitted (f , read)

Bob says Permitted (File, read)
slev(File) = TS
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

APP 05, King’s College London, 23 October 2012 – p. 39/44



Writing Files
Access policy for writing

∀f. slev(Bob)≤ slev(f)⇒
Bob controls Permitted (f , write)

Bob says Permitted (File, write)
slev(File) = TS
slev(Bob) = S
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, write)

APP 05, King’s College London, 23 October 2012 – p. 40/44



Bell-LaPadula

Read Rule: A principal P can read an object O if and only if
P ’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P ’s.

Meta-Rule: All principals in a system should have a
sufficiently high security level in order to access an object.

This restricts information flow⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’

APP 05, King’s College London, 23 October 2012 – p. 41/44



Bell-LaPadula

Read Rule: A principal P can read an object O if and only if
P ’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P ’s.

Meta-Rule: All principals in a system should have a
sufficiently high security level in order to access an object.

This restricts information flow⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’

APP 05, King’s College London, 23 October 2012 – p. 41/44



Principle of
Least Privilege

A principal should have as few privileges as
possible to access a resource.

Bob (TS) and Alice (S) want to communicate

⇒ Bob should lower his security level

APP 05, King’s College London, 23 October 2012 – p. 42/44



Biba Policy
Data Integrity (rather than data confidentiality)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only if
P ’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P ’s.

E.g. Generals write orders to officers; officers write oders
to solidiers
Firewall: you can read from inside the firewall, but not from
outside
Phishing: you can look at an approved PDF, but not one from a
random email

APP 05, King’s College London, 23 October 2012 – p. 43/44



Biba Policy
Data Integrity (rather than data confidentiality)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only if
P ’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P ’s.

E.g. Generals write orders to officers; officers write oders
to solidiers
Firewall: you can read from inside the firewall, but not from
outside
Phishing: you can look at an approved PDF, but not one from a
random email

APP 05, King’s College London, 23 October 2012 – p. 43/44



Point to Take Home

Formal methods can be an excellent way of
finding bugs as they force the designer to make
everything explicit and thus confront difficult
design choices that might otherwise be fudged.

APP 05, King’s College London, 23 October 2012 – p. 44/44


