Access Control and Privacy Policies (6)

Email: christian.urban at kcl.ac.uk

Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

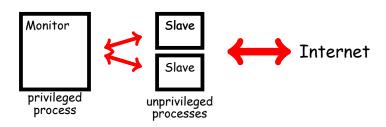
1st Week

• What are hashes and salts?

1st Week

- What are hashes and salts?
- ...can be use to store securely data on a client, but you cannot make your protocol dependent on the presence of the data

1st Week


- What are hashes and salts?
- ...can be use to store securely data on a client, but you cannot make your protocol dependent on the presence of the data
- ... can be used to store and verify passwords

2nd Week

- Buffer overflows
- choice of programming language can mitigate or even eliminate this problem

3rd Week

- defence in depth
- privilege separation afforded by the OS

4th Week

 voting...has security requirements that are in tension with each other integrity vs ballot secrecy authentication vs enfranchisment

 electronic voting makes 'whole sale' fraud easier as opposed to 'retail attacks'

5th Week

- access control logic
- formulas
- judgements
- inference rules

Access Control Logic

Formulas

```
F ::= true

| false

| F \wedge F

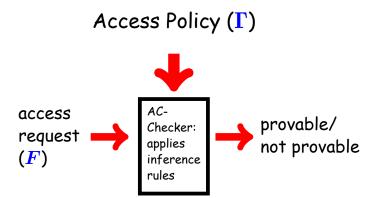
| F \vee F

| F \Rightarrow F

| p(t_1,...,t_n)

| P says F "saying predicate"
```

Judgements

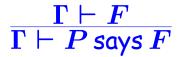

$$\Gamma \vdash \mathsf{F}$$

Inference Rules

$$egin{aligned} \overline{\Gamma,F}dash F \ & rac{\Gammadash F_1\Rightarrow F_2}{\Gammadash F_2} \quad \Gammadash F_2 \ & rac{F_1,\Gammadash F_2}{\Gammadash F_1\Rightarrow F_2} \ & rac{\Gammadash F}{\Gammadash P ext{ says } F} \ & rac{\Gammadash F}{\Gammadash P ext{ says } (F_1\Rightarrow F_2)} \quad \Gammadash P ext{ says } F_1 \ & \Gammadash P ext{ says } F_2 \end{aligned}$$

Proofs

The Access Control Problem


Recall the following scenario:

- If Admin says that file₁ should be deleted, then this file must be deleted.
- Admin trusts Bob to decide whether file₁ should be deleted.
- Bob wants to delete file1.

How to prove $\Gamma \vdash F$?

$$\overline{\Gamma, F \vdash F}$$

$rac{F_1,\Gammadash F_2}{\Gammadash F_1\Rightarrow F_2}$

$$rac{\Gamma dash F_1}{\Gamma dash F_1 ee F_2} \qquad rac{\Gamma dash F_2}{\Gamma dash F_1 ee F_2}$$

$$rac{\Gamma dash F_1 \quad \Gamma dash F_2}{\Gamma dash F_1 \land F_2}$$

lacktriangledown I found that Γ contains the assumption $F_1 \Rightarrow F_2$

- lacktriangledown I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- ② If I can prove $\Gamma \vdash F_1$,

- lacktriangledown I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- ② If I can prove $\Gamma \vdash F_1$, then I can prove $\Gamma \vdash F_2$

- lacktriangledown I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- ② If I can prove $\Gamma \vdash F_1$, then I can prove $\Gamma \vdash F_2$
- **③** So better I try to prove Γ ⊢ Pred with the additional assumption F_2 .

$$F_2, \Gamma \vdash \mathsf{Pred}$$