
Handout 5 (Protocols)
Protocols are the computer science equivalent to fractals and the Mandelbrot
set in mathematics. With the laĴer you have a simple formula which you just
iterate and then you test whether a point is inside or outside a region, and
voila something magically happened.1 Protocols are similar: they are simple
exchanges of messages, but in the end something “magical” can happen—for
example a secret channel has been established or two entities have authenti-
cated themselves to each other. The problemwithmagic is of course it is poorly
understood and even experts often got, and get, it wrong with protocols.

To have an idea what kind of protocols we are interested, let us look at a
few examples. One example are (wireless) key fobs which operate the central
locking system and the ignition in a car.

The point of these key fobs is that everything is done over the “air”—there is
no physical connection between the key, doors and engine. So wemust achieve
security by exchanging certain messages between the key fob on one side and
doors and engine on the other. Clearly what we like to achieve is that I can
get into my car and start it, but that thieves are kept out. The problem is that
everybody can “overhear” or skim the exchange of messages between the key
fob and car. In this scenario the simplest aĴack you need to defend against is a
person-in-the-middle aĴack. Imagine you park your car in front of a supermar-
ket. One thief follows you with a strong transmiĴer. A second thief “listens” to
the signal from the car and wirelessly transmits it to the “colleague” who fol-
lowed you and who silently enquires about the answer from the key fob. The
answer is then send back to the thief at the car, which then dutifully opens and
possibly starts. No need to steal your key anymore.

But there are many more such protocols we like to consider. Other exam-
ples are wifi—you might sit at a Starbucks and talk wirelessly to the free ac-
cess point there and from there talk with your bank, for example. Also even
if your have to touch your Oyster card at the reader each time you enter and
exit the Tube, it actually operates wirelessly and with appropriate equipment
over some quite large distance. But there are many many more examples (Bit-
coins, mobile phones,…). The common characteristics of the protocols we are
interested in here is that an adversary or aĴacker is assumed to be in complete
control over the network or channel over which you exchanging messages. An
aĴacker can install a packet sniffer on a network, inject packets, modify packets,

1http://en.wikipedia.org/wiki/Fractal, http://en.wikipedia.org/wiki/Mandelbrot_
set

1

http://en.wikipedia.org/wiki/Fractal
http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Mandelbrot_set


replay old messages, or fake preĴy much everything. In this hostile environ-
ment, the purpose of protocols (that is exchange ofmessages) is to achieve some
security goal, for example only allow the owner of the car in but everybody else
should be kept out.

The protocols we are interested here are generic descriptions of how to ex-
change messages in order to achieve a goal, be it establishing a mutual secure
connection or being able to authenticate to a system. Unlike the distant past
where for example we had to meet a person in order to authenticate him or
her (via a passport for example), the problem we are facing on the Internet is
that we cannot easily be sure who we are “talking” to. The obvious reason is
that only some electrons arrive at our computer; we do not see the person, or
computer, behind the incoming electrons (messages).

To start, let us look at one of the simplest protocols that are part of the TCP
protocol (which underlies the Internet). This protocol does not do anything se-
curity relevant, it just establishes a “hello” from a client to a server which the
server answers with “I heard you” and the client answers in turn with some-
thing like “thanks”. This protocol is often called a three-way handshake. Graph-
ically it can be illustrated as follows

On the left-hand side is a client, sayAlice, on the right-hand side is a server, say.
Time is running from top to boĴom. Alice initial SYNmessage needs some time
to travel to the server. The server answers with SYN-ACK, which will require
some time to arrive at Alice. Her answer ACK will again take some time to
arrive at the server. After the messages are exchanged Alice and the server
simply have established a channel to communicate over. Alice does not know
whether she is really talking to the server (somebody else on the networkmight
have intercepted her message and replied in place of the server). Similarly, the
server has no idea who it is talking to. That this can be established depends on
what is exchanged next and is the point of the protocols we want to study in
more detail.

Beforewe start in earnest, we need to fix amore convenient notation for pro-
tocols. Drawing pictures like the one abovewould be awkward in the long-run.
The notation already abstracts away from a few details we are not interested in:
for example the time the messages need to travel between endpoints. What we
are interested in is in which order the messages are sent. For the SYN-ACK
protocol we will therefore use the notation

2



A → S: SYN
S → A: SYN_ACK
A → S: ACK

The left-hand side specifies who is the sender and who is the receiver of the
message. On the right of the colon is the message that is send. The order from
top to down specifies in which order the messages are sent. We also have the
convention that messages like above SYN are send in clear-text over the net-
work. If we want that a message is encrypted, then we use the notation

{msg}KAB

for messages. The curly braces indicate a kind of envelope which can only be
opened if you know the key KAB with which the message has been encrypted.
We always assume that an aĴacker, say Eve, cannot get the content of the mes-
sage, unless she is also in the possession of the key. We explicitly exclude in our
study that the encryption can be broken.2 It is also possible that an encrypted
message contains several parts. In this case we would write something like

{msg1, msg2}KAB

But again Eve would not be able to know this unless she also has the key. We
also allow the possibility that amessage is encrypted twice under different keys.
In this case we write

{{msg}KAB}KBC

Note, however, while an aĴacker cannot obtain the content of the message
without the key, this encrypted message can be observed and be recorded and
then replayed at another time.

Keyfobs - protocol
http://www.cs.ru.nl/~rverdult/Gone_in_360_Seconds_Hijacking_with_Hitag2-USENIX_

2012.pdf
aĴack such protocols because they use weak ciphers (Oyster card)

2…which of course is what a good protocol designer needs to ensure and more often than not
protocols are broken. For example Oyster cards contain a very weak encryption mechanismwhich
has been aĴacked.

3

http://www.cs.ru.nl/~rverdult/Gone_in_360_Seconds_Hijacking_with_Hitag2-USENIX_2012.pdf
http://www.cs.ru.nl/~rverdult/Gone_in_360_Seconds_Hijacking_with_Hitag2-USENIX_2012.pdf

