
Access Control and
Privacy Policies (5)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

APP 05, King’s College London, 29 October 2013 – p. 1/52



Last Week
A → B : . . .
B → A : . . .

:

by convention A, B are named principals Alice…
but most likely they are programs
indicates one “protocol run”, or session, which
specifies an order in the communication
there can be several sessions in parallel (think of
wifi routers)
nonces (randomly generated numbers) used only
once

APP 05, King’s College London, 29 October 2013 – p. 2/52



Cryptographic Protocol
Failures

Ross Anderson and Roger Needham wrote:

A lot of the recorded frauds were the result of this kind
of blunder, or from management negligence pure and
simple. However, there have been a significant number
of cases where the designers protected the right things,
used cryptographic algorithms which were not broken,
and yet found that their systems were still successfully
attacked.

APP 05, King’s College London, 29 October 2013 – p. 3/52



Protocols

Examples where “over-the-air” protocols are used
wifi
card readers (you cannot trust the terminals)
RFI (passports)

APP 05, King’s College London, 29 October 2013 – p. 4/52



APP 05, King’s College London, 29 October 2013 – p. 5/52



Chip-and-PIN

A “tamperesitant” terminal playing Tetris on
youtube.
(http://www.youtube.com/watch?v=wWTzkD9M0sU)

APP 05, King’s College London, 29 October 2013 – p. 6/52

http://www.youtube.com/watch?v=wWTzkD9M0sU
http://www.youtube.com/watch?v=wWTzkD9M0sU


Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not
allow unauthorised use for more than a day, as
TfL promises to turn off any cloned cards within
24 hours…”

APP 05, King’s College London, 29 October 2013 – p. 7/52



Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not
allow unauthorised use for more than a day, as
TfL promises to turn off any cloned cards within
24 hours…”

APP 05, King’s College London, 29 October 2013 – p. 7/52

..

Wirelessly Pickpocketing a Mifare Classic Card

The Mifare Classic is the most widely used contactless smartcard on the
market. The stream cipher CRYPTO1 used by the Classic has recently
been reverse engineered and serious attacks have been proposed. The
most serious of them retrieves a secret key in under a second. In order to
clone a card, previously proposed attacks require that the adversary either
has access to an eavesdropped communication session or executes a
message-by-message man-in-the-middle attack between the victim and a
legitimate reader. Although this is already disastrous from a cryptographic
point of view, system integrators maintain that these attacks cannot be
performed undetected.
This paper proposes four attacks that can be executed by an adversary
having only wireless access to just a card (and not to a legitimate reader).
The most serious of them recovers a secret key in less than a second on
ordinary hardware. Besides the cryptographic weaknesses, we exploit
other weaknesses in the protocol stack. A vulnerability in the
computation of parity bits allows an adversary to establish a side channel.
Another vulnerability regarding nested authentications provides enough
plaintext for a speedy known-plaintext attack.



Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not
allow unauthorised use for more than a day, as
TfL promises to turn off any cloned cards within
24 hours…”

APP 05, King’s College London, 29 October 2013 – p. 7/52



Another Example
In an email from Ross Anderson

From: Ross Anderson <Ross.Anderson@cl.cam.ac.uk>
Sender: cl-security-research-bounces@lists.cam.ac.uk
To: cl-security-research@lists.cam.ac.uk
Subject: Birmingham case
Date: Tue, 13 Aug 2013 15:13:17 +0100

APP 05, King’s College London, 29 October 2013 – p. 8/52



Another Example
In an email from Ross Anderson

From: Ross Anderson <Ross.Anderson@cl.cam.ac.uk>
Sender: cl-security-research-bounces@lists.cam.ac.uk
To: cl-security-research@lists.cam.ac.uk
Subject: Birmingham case
Date: Tue, 13 Aug 2013 15:13:17 +0100

APP 05, King’s College London, 29 October 2013 – p. 8/52

..

As you may know, Volkswagen got an injunction against the University of
Birmingham suppressing the publication of the design of a weak cipher
used in the remote key entry systems in its recent-model cars. The paper
is being given today at Usenix, minus the cipher design.

I’ve been contacted by Birmingham University’s lawyers who seek to prove
that the cipher can be easily obtained anyway. They are looking for a
student who will download the firmware from any newish VW,
disassemble it and look for the cipher. They’d prefer this to be done by a
student rather than by a professor to emphasise how easy it is.

Volkswagen’s argument was that the Birmingham people had reversed a
locksmithing tool produced by a company in Vietnam, and since their key
fob chip is claimed to be tamper-resistant, this must have involved a
corrupt insider at VW or at its supplier Thales. Birmingham’s argument is
that this is nonsense as the cipher is easy to get hold of. Their lawyers feel
this argument would come better from an independent outsider.

Let me know if you’re interested in having a go, and I’ll put you in touch
Ross



Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Passwords:

B → A : KAB

Problems: Eavesdropper can capture the secret
and replay it; A cannot confirm the identity of B

APP 05, King’s College London, 29 October 2013 – p. 9/52



Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Passwords:

B → A : KAB

Problems: Eavesdropper can capture the secret
and replay it; A cannot confirm the identity of B

APP 05, King’s College London, 29 October 2013 – p. 9/52



Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Simple Challenge Response:

A → B : N
B → A : {N}KAB

APP 05, King’s College London, 29 October 2013 – p. 10/52



Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Mutual Challenge Response:

A → B : NA

B → A : {NA, NB}KAB

A → B : NB

APP 05, King’s College London, 29 October 2013 – p. 11/52



One Time Passwords

B → A : C,CKAB

A counter C increases with each transmission; A
will not accept a C which has already been
accepted (used in car key fob).

APP 05, King’s College London, 29 October 2013 – p. 12/52



Person-in-the-Middle

“Normal” protocol run:

A sends public key to B

B sends public key to A

A sends message encrypted with B’s public key,
B decrypts it with its private key
B sends message encrypted with A’s public key,
A decrypts it with its private key

APP 05, King’s College London, 29 October 2013 – p. 13/52



Person-in-the-Middle

Attack:
A sends public key to B — C intercepts this
message and send his own public key
B sends public key to A — C intercepts this
message and send his own public key
A sends message encrypted with C ’s public key,
C decrypts it with its private key, re-encrypts
with B’s public key
similar

APP 05, King’s College London, 29 October 2013 – p. 14/52



Person-in-the-Middle
Prevention:
A sends public key to B

B sends public key to A

A encrypts message with B’s public key, send’s
half of the message
B encrypts message with A’s public key, send’s
half of the message
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message

C would have to invent a totally new message

APP 05, King’s College London, 29 October 2013 – p. 15/52



Person-in-the-Middle
Prevention:
A sends public key to B

B sends public key to A

A encrypts message with B’s public key, send’s
half of the message
B encrypts message with A’s public key, send’s
half of the message
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message
C would have to invent a totally new message

APP 05, King’s College London, 29 October 2013 – p. 15/52



Motivation

The ISO/IEC 9798 specifies authentication
mechanisms which use security techniques. These
mechanisms are used to corroborate that an entity
is the one that is claimed. An entity to be
authenticated proves its identity by showing its
knowledge of a secret. The mechanisms are
defined as exchanges of information between
entities and, where required, exchanges with a
trusted third party.

APP 05, King’s College London, 29 October 2013 – p. 16/52



Motivation

But…

The ISO/IEC 9798 standard neither specifies a
threat model nor defines the security properties
that the protocols should satisfy.

Unfortunately, there are no general precise
definitions for the goals of protocols.

APP 05, King’s College London, 29 October 2013 – p. 17/52



Motivation

But…

The ISO/IEC 9798 standard neither specifies a
threat model nor defines the security properties
that the protocols should satisfy.

Unfortunately, there are no general precise
definitions for the goals of protocols.

APP 05, King’s College London, 29 October 2013 – p. 17/52



Best Practices

Principle 1: Every message should say what it
means: the interpretation of a message should not
depend on the context.

Principle 2: If the identity of a principal is
essential to the meaning of a message, it is prudent
to mention the principal’s name explicitly in the
message (though difficult).

APP 05, King’s College London, 29 October 2013 – p. 18/52



Best Practices

Principle 1: Every message should say what it
means: the interpretation of a message should not
depend on the context.

Principle 2: If the identity of a principal is
essential to the meaning of a message, it is prudent
to mention the principal’s name explicitly in the
message (though difficult).

APP 05, King’s College London, 29 October 2013 – p. 18/52



Best Practices
Principle 3: Be clear about why encryption is
being done. Encryption is not wholly cheap, and
not asking precisely why it is being done can lead
to redundancy. Encryption is not synonymous
with security.

Possible Uses of Encryption
Preservation of confidentiality: {X}K only those
that have K may recover X.
Guarantee authenticity: The partner is indeed
some particular principal.
Guarantee confidentiality and authenticity: binds
two parts of a message — {X,Y }K is not the
same as {X}K and {Y }K.

APP 05, King’s College London, 29 October 2013 – p. 19/52



Best Practices

Principle 4: The protocol designer should know
which trust relations his protocol depends on, and
why the dependence is necessary. The reasons for
particular trust relations being acceptable should
be explicit though they will be founded on
judgment and policy rather than on logic.

Example Certification Authorities: CAs are
trusted to certify a key only after proper steps have
been taken to identify the principal that owns it.

APP 05, King’s College London, 29 October 2013 – p. 20/52



Access Control Logic

Ross Anderson about the use of Logic:

Formal methods can be an excellent way of finding bugs
in security protocol designs as they force the designer to
make everything explicit and thus confront difficult
design choices that might otherwise be fudged.

APP 05, King’s College London, 29 October 2013 – p. 21/52



Logic(s)
Formulas

F ::= true
| false
| F ∧ F
| F ∨ F
| F ⇒ F implies
| ¬ F negation
| p (t1,...,tn) predicates

| ∀ x. F forall quantification
| ∃ x. F exists quantification

APP 05, King’s College London, 29 October 2013 – p. 22/52

Terms t ::= x ... | c ...



Logic(s)
Formulas

F ::= true
| false
| F ∧ F
| F ∨ F
| F ⇒ F implies
| ¬ F negation
| p (t1,...,tn) predicates
| ∀ x. F forall quantification
| ∃ x. F exists quantification

APP 05, King’s College London, 29 October 2013 – p. 22/52

Terms t ::= x ... | c ...



1 abstract class Term
2 case class Var(s: String) extends Term
3 case class Consts(s: String) extends Term
4 case class Fun(s: String, ts: List[Term]) extends Term
5

6 abstract class Form
7 case object True extends Form
8 case object False extends Form
9 case class And(f1: Form, f2: Form) extends Form

10 case class Or(f1: Form, f2: Form) extends Form
11 case class Imp(f1: Form, f2: Form) extends Form
12 case class Neg(f: Form) extends Form
13 case class Pred(s: String, ts: List[Term]) extends Form

APP 05, King’s College London, 29 October 2013 – p. 23/52



Judgements

Γ ⊢ F
Γ is a collection of formulas, called the
assumptions

Example

APP 05, King’s College London, 29 October 2013 – p. 24/52



Judgements

Γ ⊢ F
Γ is a collection of formulas, called the
assumptions

Example
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

⊢ may_obtain_email (Christian)

APP 05, King’s College London, 29 October 2013 – p. 24/52



Judgements

Γ ⊢ F
Γ is a collection of formulas, called the
assumptions

Example
is_staff (Christian)
is_at_library (Christian)
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

may_obtain_email (Christian)

APP 05, King’s College London, 29 October 2013 – p. 24/52



Judgements

Γ ⊢ F
Γ is a collection of formulas, called the
assumptions

Example
is_staff (Alice)
is_staff (Christian)
is_at_library (Christian)
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

may_obtain_email (Alice)

APP 05, King’s College London, 29 October 2013 – p. 24/52



1 abstract class Term
2 case class Var(s: String) extends Term
3 case class Consts(s: String) extends Term
4 case class Fun(s: String, ts: List[Term]) extends Term
5

6 abstract class Form
7 case object True extends Form
8 case object False extends Form
9 case class And(f1: Form, f2: Form) extends Form

10 case class Or(f1: Form, f2: Form) extends Form
11 case class Imp(f1: Form, f2: Form) extends Form
12 case class Neg(f: Form) extends Form
13 case class Pred(s: String, ts: List[Term]) extends Form
14

15 case class Judgement(Gamma: List[Form], F: Form) {
16 def lhs = Gamma
17 def rhs = F
18 }

APP 05, King’s College London, 29 October 2013 – p. 25/52



Inference Rules

premise1 ... premisen
conclusion

The conlusion and premises are judgements

Examples
Γ ⊢ F1 Γ ⊢ F2

Γ ⊢ F1 ∧ F2

Γ ⊢ F1

Γ ⊢ F1 ∨ F2

Γ ⊢ F2

Γ ⊢ F1 ∨ F2

APP 05, King’s College London, 29 October 2013 – p. 26/52



Inference Rules

premise1 ... premisen
conclusion

The conlusion and premises are judgements

Examples
Γ ⊢ F1 Γ ⊢ F2

Γ ⊢ F1 ∧ F2

Γ ⊢ F1

Γ ⊢ F1 ∨ F2

Γ ⊢ F2

Γ ⊢ F1 ∨ F2

APP 05, King’s College London, 29 October 2013 – p. 26/52



Inference Rules

premise1 ... premisen
conclusion

The conlusion and premises are judgements

Examples
Γ ⊢ F1 Γ ⊢ F2

Γ ⊢ F1 ∧ F2

Γ ⊢ F1

Γ ⊢ F1 ∨ F2

Γ ⊢ F2

Γ ⊢ F1 ∨ F2

APP 05, King’s College London, 29 October 2013 – p. 26/52



Implication

Γ, F1 ⊢ F2

Γ ⊢ F1 ⇒ F2

Γ ⊢ F1 ⇒ F2 Γ ⊢ F1

Γ ⊢ F2

APP 05, King’s College London, 29 October 2013 – p. 27/52



Universal Quantification

Γ ⊢ ∀ x. F
Γ ⊢ F[x := t]

APP 05, King’s College London, 29 October 2013 – p. 28/52



Start Rules / Axioms
if F ∈ Γ

Γ ⊢ F

Also written as:

Γ, F ⊢ F

Γ ⊢ true

APP 05, King’s College London, 29 October 2013 – p. 29/52



Start Rules / Axioms
if F ∈ Γ

Γ ⊢ F

Also written as:

Γ, F ⊢ F

Γ ⊢ true

APP 05, King’s College London, 29 October 2013 – p. 29/52



Start Rules / Axioms
if F ∈ Γ

Γ ⊢ F

Also written as:

Γ, F ⊢ F

Γ ⊢ true
APP 05, King’s College London, 29 October 2013 – p. 29/52



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

APP 05, King’s College London, 29 October 2013 – p. 30/52



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

APP 05, King’s College London, 29 October 2013 – p. 30/52

Γ ⊢ is_staff (Christian) Γ ⊢ is_at_library (Christian)



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

APP 05, King’s College London, 29 October 2013 – p. 30/52

Γ ⊢ is_staff (Christian) Γ ⊢ is_at_library (Christian)
Γ ⊢ is_staff (Christian) ∧ is_at_library (Christian)



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

APP 05, King’s College London, 29 October 2013 – p. 30/52

Γ ⊢ is_staff (Christian) Γ ⊢ is_at_library (Christian)
Γ ⊢ is_staff (Christian) ∧ is_at_library (Christian)

Γ ⊢ ∀ x. is_staff (x) ∧ is_at_library (x) ⇒ may_obtain_email (x)



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

APP 05, King’s College London, 29 October 2013 – p. 30/52

Γ ⊢ is_staff (Christian) Γ ⊢ is_at_library (Christian)
Γ ⊢ is_staff (Christian) ∧ is_at_library (Christian)

Γ ⊢ ∀ x. is_staff (x) ∧ is_at_library (x) ⇒ may_obtain_email (x)
Γ ⊢ is_staff (Christian) ∧ is_at_library (Christian)

⇒ may_obtain_email (Christian)



Let Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

APP 05, King’s College London, 29 October 2013 – p. 30/52

Γ ⊢ is_staff (Christian) Γ ⊢ is_at_library (Christian)
Γ ⊢ is_staff (Christian) ∧ is_at_library (Christian)

Γ ⊢ ∀ x. is_staff (x) ∧ is_at_library (x) ⇒ may_obtain_email (x)
Γ ⊢ is_staff (Christian) ∧ is_at_library (Christian)

⇒ may_obtain_email (Christian)

...
...

Γ ⊢ may_obtain_email (Christian)



Access Control

Γ ⊢ F

If there is a proof ⇒ yes (granted)
If there isn’t ⇒ no (denied)

Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

Γ ̸⊢ may_obtain_email (Alice)

APP 05, King’s College London, 29 October 2013 – p. 31/52



Access Control

Γ ⊢ F

If there is a proof ⇒ yes (granted)
If there isn’t ⇒ no (denied)

Γ =
is_staff (Christian),
is_at_library (Christian),
∀ x. is_at_library (x) ∧ is_staff (x) ⇒ may_obtain_email (x)

Γ ̸⊢ may_obtain_email (Alice)

APP 05, King’s College London, 29 October 2013 – p. 31/52



The Access Control
Problem

..

access
request
(F ) .

granted/
not granted

.

Access
Control
Checker

.

Access Policy (Γ)

APP 05, King’s College London, 29 October 2013 – p. 32/52



Bad News

We introduced (roughly) first-order logic.

Judgements
Γ ⊢ F

are in general undecidable.
The problem is semi-decidable.

APP 05, King’s College London, 29 October 2013 – p. 33/52



Bad News

We introduced (roughly) first-order logic.

Judgements
Γ ⊢ F

are in general undecidable.

The problem is semi-decidable.

APP 05, King’s College London, 29 October 2013 – p. 33/52



Bad News

We introduced (roughly) first-order logic.

Judgements
Γ ⊢ F

are in general undecidable.
The problem is semi-decidable.

APP 05, King’s College London, 29 October 2013 – p. 33/52



Access Control Logic
F ::= true

| false
| F ∧ F
| F ∨ F
| F ⇒ F
| p (t1,...,tn)
| P says F “saying predicate”

where P ::= Alice, Bob, Christian, ... (principals)

HoD says is_staff (Christian)

APP 05, King’s College London, 29 October 2013 – p. 34/52



Access Control Logic
F ::= true

| false
| F ∧ F
| F ∨ F
| F ⇒ F
| p (t1,...,tn)
| P says F “saying predicate”

where P ::= Alice, Bob, Christian, ... (principals)

HoD says is_staff (Christian)

APP 05, King’s College London, 29 October 2013 – p. 34/52



1 abstract class Term
2 case class Var(s: String) extends Term
3 case class Consts(s: String) extends Term
4 case class Fun(s: String, ts: List[Term]) extends Term
5

6 abstract class Form
7 case object True extends Form
8 case object False extends Form
9 case class And(f1: Form, f2: Form) extends Form

10 case class Or(f1: Form, f2: Form) extends Form
11 case class Imp(f1: Form, f2: Form) extends Form
12 case class Neg(f: Form) extends Form
13 case class Pred(s: String, ts: List[Term]) extends Form
14 case class Says(s: String, f: Form) extends Form

APP 05, King’s College London, 29 October 2013 – p. 35/52



Rules about Says

Γ ⊢ F
Γ ⊢ P says F

Γ ⊢ P says (F1 ⇒ F2) Γ ⊢ P says F1

Γ ⊢ P says F2

Γ ⊢ P says (P says F)
Γ ⊢ P says F

APP 05, King’s College London, 29 October 2013 – p. 36/52



Consider the following scenario:
If Admin says that file1 should be deleted, then
this file must be deleted.
Admin trusts Bob to decide whether file1 should
be deleted.
Bob wants to delete file1.

Γ =
(Admin says del_file1) ⇒ del_file1,
(Admin says ((Bob says del_file1) ⇒ del_file1)),
Bob says del_file1

Γ ⊢ del_file1

APP 05, King’s College London, 29 October 2013 – p. 37/52



Consider the following scenario:
If Admin says that file1 should be deleted, then
this file must be deleted.
Admin trusts Bob to decide whether file1 should
be deleted.
Bob wants to delete file1.

Γ =
(Admin says del_file1) ⇒ del_file1,
(Admin says ((Bob says del_file1) ⇒ del_file1)),
Bob says del_file1

Γ ⊢ del_file1

APP 05, King’s College London, 29 October 2013 – p. 37/52



Consider the following scenario:
If Admin says that file1 should be deleted, then
this file must be deleted.
Admin trusts Bob to decide whether file1 should
be deleted.
Bob wants to delete file1.

Γ =
(Admin says del_file1) ⇒ del_file1,
(Admin says ((Bob says del_file1) ⇒ del_file1)),
Bob says del_file1

Γ ⊢ del_file1

APP 05, King’s College London, 29 October 2013 – p. 37/52



Γ ⊢ F
Γ ⊢ P says F

Γ ⊢ P says (F1 ⇒ F2) Γ ⊢ P says F1

Γ ⊢ P says F2

Γ =
(Admin says del_file1) ⇒ del_file1,
(Admin says ((Bob says del_file1) ⇒ del_file1)),
Bob says del_file1

Γ ⊢ del_file1

APP 05, King’s College London, 29 October 2013 – p. 38/52



Γ ⊢ Bob says del_file
Γ ⊢ Admin says (Bob says del_file)︸ ︷︷ ︸

X

Γ ⊢ Admin says (Bob says del_file ⇒ del_file)
...
X

Γ ⊢ Admin says del_file︸ ︷︷ ︸
Y

Γ ⊢ (Admin says del_file) ⇒ del_file
...
Y

Γ ⊢ del_file

APP 05, King’s College London, 29 October 2013 – p. 39/52



Controls

P controls F ≡ (P says F) ⇒ F

its meaning “P is entitled to do F”

if P controls F and P says F then F

Γ ⊢ P controls F Γ ⊢ P says F
Γ ⊢ F

Γ ⊢ (P says F) ⇒ F Γ ⊢ P says F
Γ ⊢ F

APP 05, King’s College London, 29 October 2013 – p. 40/52



Controls

P controls F ≡ (P says F) ⇒ F

its meaning “P is entitled to do F”

if P controls F and P says F then F

Γ ⊢ P controls F Γ ⊢ P says F
Γ ⊢ F

Γ ⊢ (P says F) ⇒ F Γ ⊢ P says F
Γ ⊢ F

APP 05, King’s College London, 29 October 2013 – p. 40/52



Controls

P controls F ≡ (P says F) ⇒ F

its meaning “P is entitled to do F”

if P controls F and P says F then F

Γ ⊢ P controls F Γ ⊢ P says F
Γ ⊢ F

Γ ⊢ (P says F) ⇒ F Γ ⊢ P says F
Γ ⊢ F

APP 05, King’s College London, 29 October 2013 – p. 40/52



Speaks For

P 7→ Q ≡ ∀ F. (P says F) ⇒ (Q says F)

its meaning “P speaks for Q”

Γ ⊢ P 7→ Q Γ ⊢ P says F
Γ ⊢ Q says F

Γ ⊢ P 7→ Q Γ ⊢ Q controls F
Γ ⊢ P controls F

Γ ⊢ P 7→ Q Γ ⊢ Q 7→ R
Γ ⊢ P 7→ R

APP 05, King’s College London, 29 October 2013 – p. 41/52



Speaks For

P 7→ Q ≡ ∀ F. (P says F) ⇒ (Q says F)

its meaning “P speaks for Q”

Γ ⊢ P 7→ Q Γ ⊢ P says F
Γ ⊢ Q says F

Γ ⊢ P 7→ Q Γ ⊢ Q controls F
Γ ⊢ P controls F

Γ ⊢ P 7→ Q Γ ⊢ Q 7→ R
Γ ⊢ P 7→ R

APP 05, King’s College London, 29 October 2013 – p. 41/52



Security Levels

Top secret (TS)

Secret (S)

Public (P )

slev(P ) < slev(S) < slev(TS)

Bob has a clearance for “secret”

Bob can read documents that are public or sectret, but not
top secret

APP 05, King’s College London, 29 October 2013 – p. 42/52



Security Levels

Top secret (TS)

Secret (S)

Public (P )

slev(P ) < slev(S) < slev(TS)

Bob has a clearance for “secret”

Bob can read documents that are public or sectret, but not
top secret

APP 05, King’s College London, 29 October 2013 – p. 42/52



Reading a File

Bob controls Permitted (File, read)
Bob says Permitted (File, read)

Permitted (File, read)

APP 05, King’s College London, 29 October 2013 – p. 43/52



Reading a File

slev(File) < slev(Bob) ⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) < slev(Bob)

Permitted (File, read)

APP 05, King’s College London, 29 October 2013 – p. 43/52



Reading a File

slev(File) < slev(Bob) ⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = S
slev(P ) < slev(S)

Permitted (File, read)

APP 05, King’s College London, 29 October 2013 – p. 43/52



Substitution Rule

Γ ⊢ slev(P ) = l1 Γ ⊢ slev(Q) = l2 Γ ⊢ l1 < l2
Γ ⊢ slev(P ) < slev(Q)

slev(Bob) = S

slev(File) = P

slev(P ) < slev(S)

APP 05, King’s College London, 29 October 2013 – p. 44/52



Substitution Rule

Γ ⊢ slev(P ) = l1 Γ ⊢ slev(Q) = l2 Γ ⊢ l1 < l2
Γ ⊢ slev(P ) < slev(Q)

slev(Bob) = S

slev(File) = P

slev(P ) < slev(S)

APP 05, King’s College London, 29 October 2013 – p. 44/52



Reading a File

slev(File) < slev(Bob) ⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
?

Permitted (File, read)

APP 05, King’s College London, 29 October 2013 – p. 45/52



Reading a File

slev(File) < slev(Bob) ⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

APP 05, King’s College London, 29 October 2013 – p. 45/52



Transitivity Rule

Γ ⊢ l1 < l2 Γ ⊢ l2 < l3
Γ ⊢ l1 < l3

slev(P ) < slev(S)

slev(S) < slev(TS)

slev(P ) < slev(TS)

APP 05, King’s College London, 29 October 2013 – p. 46/52



Reading Files
Access policy for reading

∀f. slev(f)< slev(Bob) ⇒
Bob controls Permitted (f , read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

APP 05, King’s College London, 29 October 2013 – p. 47/52



Reading Files
Access policy for reading

∀f. slev(f)≤ slev(Bob) ⇒
Bob controls Permitted (f , read)

Bob says Permitted (File, read)
slev(File) = TS
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

APP 05, King’s College London, 29 October 2013 – p. 47/52



Writing Files
Access policy for writing

∀f. slev(Bob) ≤ slev(f) ⇒
Bob controls Permitted (f , write)

Bob says Permitted (File, write)
slev(File) = TS
slev(Bob) = S
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, write)

APP 05, King’s College London, 29 October 2013 – p. 48/52



Point to Take Home

Formal methods can be an excellent way of
finding bugs as they force the designer to make
everything explicit and thus confront difficult
design choices that might otherwise be fudged.

APP 05, King’s College London, 29 October 2013 – p. 49/52


