Handout 6 (Zero-Knowledge Proofs)

Zero-knowledge proofs (short ZKP) solve a paradoxical puzzle: How to convince somebody else that one knows a secret, without revealing what the secret actually is? This sounds like a problem the Mad Hatter from Alice in Wonderland would occupy himself with, but actually there some serious and not so serious applications of it. For example, if you solve crosswords with your friend, say Bob, you might want to convince him that you found a solution for one question, but of course you do not want to reveal the solution, as this might give Bob an advantage somewhere else in the crossword. So how to convince Bob that you know the answer (or a secret)? One way would be to come up with the following protocol: Suppose the answer is *folio*. Then look up the definition of *folio* in a dictionary. Say you find:

"an *individual* leaf of paper or parchment, either loose as one of a series or forming part of a bound volume, which is numbered on the recto or front side only."

Take the first non-article word in this definition, in this case *individual*, and look up the definition of this word, say

"a single *human* being as distinct from a group"

In this definition take the second non-article word, that is *human*, and again look up the definition of this word. This will yield

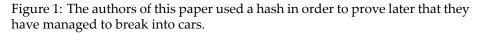
"relating to or characteristic of humankind"

You could go on to look up the definition of the third non-article in this definition and so on. But let us assume you agreed with Bob to stop after three iterations with the third non-article word in the last definition, that is *or*. Now, instead of sending to Bob the solution *folio*, you send to him *or*.

How can Bob verify that you know the solution? Well, once he solved it himself, he can use the dictionary and follow the same "trail" as you did. If the final word agrees with what you had sent him, he must infer you knew the solution earlier than him. This protocol works like a one-way hash function because *or* does not give any hint as to what was the first word was. I leave you to think why this protocol avoids articles?

After Bob found his solution and verified that according to the protocol it "maps" also to *or*, can he be entirely sure no cheating is going on? Not with 100% certainty. It could have been possible that he was given *or* as the word, but it derived from a different word. This might seem very unlikely, but at least theoretical it is a possibility. Protocols based on zero-knowledge proofs will produce a similar result—they give an answer that might be erroneous in a very small number of cases. The point is to iterate them long enough so that the theoretical possibility of cheating is negligibly small.

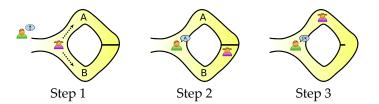
By the way, the authors of the paper "Dismantling Megamos Crypto: Wirelessly Lockpicking a Vehicle Immobilizer" who were barred from publishing



their results used also a hash to prove they did the work and (presumably) managed to get into cars without a key; see Figure 1. This is very similar to the method about crosswords: They like to prove that they did the work, but not giving out the "solution". But this also shows what the problem with such a method is: yes, we can hide the secret temporarily, but if somebody else wants to verify it, then the secret has to be made public. Bob needs to know that *folio* is the solution before he can verify the claim that somebody else had the solution first. Similarly with the paper: we need to wait until the authors are finally allowed to publish their findings in order to verify the hash. This might happen at some point, but equally it might never happen (what for example happens if the authors lose their copy of the paper because of a disk failure?). Zero-knowledge proofs, in contrast, can be immediately checked, even if the secret is not public yet and never will be.

ZKP: An Illustrative Example

The idea behind zero-knowledge proofs is not very obvious and will surely take some time for you to digest. Therefore let us start with a simple illustrative example. The example will not be perfect, but hopefully explain the gist of the idea. The example is called Alibaba's cave, which graphically looks as follows:



Let us take a closer look at the picture in Step 1: The cave has a tunnel which forks at some point. Both forks are connected in a loop. At the deep end of the loop is a magic wand. The point of the magic wand is that Alice knows the secret word for how to open it. She wants to keep the word secret, but wants to convince Bob that she knows it.

One way of course would be to let Bob follow her, but then he would also find out the secret. This does not work. So let us first fix the rules: At the beginning Alice and Bob are outside the cave. Alice goes in alone and takes either tunnel labelled *A* in the picture, or the other one labelled *B*. She waits at the magic wand for the instructions from Bob, who also goes into the gave and observes what happens at the fork. He has no knowledge which tunnel Alice took and calls out (Step 2) that she should emerge from tunnel *A*, for example. If she knows the secret for opening the wand, this will not be a problem for Alice. If she was already in the A-segment of the tunnel, then she just comes back. If she was in the B-segment of the tunnel she will say the magic work and goes through the wand to emerge from *A* as requested by Bob.

Let us have a look at the case where Alice cheats, that is not knows the secret. She would still go into the cave and use, for example the *B*-segment of the tunnel. If now Bob says she should emerge from *B*, she is lucky. But if he says she should emerge from *A* then Alice is in trouble: Bob will find out she does not actually know the secret. So in order to fool Bob she needs to anticipate his call, and already go into the corresponding tunnel. This of course also does not work. So in order to find out whether Alice cheats, Bob just needs to repeat this protocol many times. Each time Alice has a chance of $\frac{1}{2}$ to be lucky or being found out. Iterating this *n* means she must be right every time and the probability for this is $\frac{1}{2}^n$.

There are some interesting observations we can make about Alibaba's cave and the ZKP protocol between Alice and Bob:

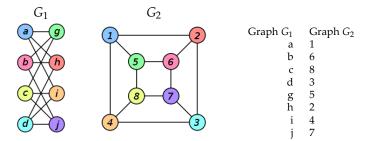
- **Completeness** If Alice knows the secret, Bob accepts Alice "proof" for sure. There is no error possible in that Bob thinks Alice cheats when she actually knows the secret.
- **Soundness** If Alice does not know the secret, Bob accepts her "proof" with a very small probability. If, as in the example above, the probability of being able to hide cheating is $\frac{1}{2}$ in each round it will be $\frac{1}{2}^n$ after *n*-rounds, which even for small *n* say > 10 is very small indeed.
- Zero-Knowledge Even if Bob accepts the proof by Alice, he cannot convince anybody else.

The last property is the most interesting. Assume Alice has convinced Bob that she knows the secret and Bob filmed the whole protocol with a camera. Can he use the video to convince anybody else. After a moment thought you will agree that this is not the case. Alice and Bob might have just made is all up and colluded by Bob telling Alice beforehand which tunnel he will call. In this way it appears as if all iterations of the protocol were successful, but they prove nothing. If another person wants to find out whether Alice knows the secret, he or she would have to conduct the protocol again. This is actually the definition of a zero-knowledge proof: an independent observer cannot distinguish between a real protocol (where Alice knows the secret) and a fake one (where Bob and Alice colluded).

Using an Graph-Isomorphism Problem for ZKPs

Now the question is how can we translate Alibaba's cave into a computer science solution? It turns out we need an NP problem for that. The main feature of an NP problem is that it is computational very hard to generate a solution, but it is very easy to check whether a given solution indeed solves the problem at hand.¹

One NP problem is the *graph isomorphism problem*. It essentially determines whether the following two graphs, say G_1 and G_2 , can be moved and stretched so that they look exactly the same.



The table on the right gives a mapping of the nodes of the first graph to the nodes of the second. With this we can check: node *a* is connected in G_1 with *g*, *h* and *i*. Node *a* maps to node 1 in G_2 , which is connected to 2, 4 and 5, which again correspond via the mapping. Let us write σ for such a table and let us write

$$G_1 = \sigma(G_2)$$

for two isomorphic graphs. It is actually very easy to construct two isomorphic graphs: Start with an arbitrary graph, re-label the nodes consistently. What Alice need for the protocol below is to generate such isomorphic graphs.

Now the secret which Alice tries to hide is the knowledge of such an isomorphism σ between two such graphs. But she can convince Bob whether she knows such an isomorphism for two graphs.

¹The question whether P = NP or not, we leave to others to speculate about.

Using Modular Arithmetic for ZKP Protocols