
Security Engineering

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

SEN 08, King’s College London – p. 1/30



Recall: Bitcoins
a crypto currency by Satoshi Nakamoto
mined by solving special puzzles involving hashes
transaction history (ledger/blockchain) is P2P
distributed (12 GB)
surely a scam/ponzi scheme!

SEN 08, King’s College London – p. 2/30



Bitcoin Keys

k private key: 256 bits (randomly chosen)
K public key: generated from k
A bitcoin address: 160 Bit/20 Byte number:

A def
= RIPEMD160(SHA256(K))

RIPEMD160, SHA256 are hash functions
SEN 08, King’s College London – p. 3/30



Bitcoin Addresses
The “human readable, checked version” of A:

A

APrefix

1 for P2PKH

APrefix CheckSum

Base58Check(Prefix + A + CheckSum)

SHA256
SHA256
first 4bytes

SEN 08, King’s College London – p. 4/30



Bitcoin Addresses
The “human readable, checked version” of A:

A

APrefix

1 for P2PKH

APrefix CheckSum

Base58Check(Prefix + A + CheckSum)

SHA256
SHA256
first 4bytes

SEN 08, King’s College London – p. 4/30

Example address (Base58):
1DSrfJdB2AnWaFNgSbv3MZC2m74996JafV

(does not contain 0OlI)



Transaction Graph
older current

SEN 08, King’s College London – p. 5/30



Types of Transactions
pay-to-public-key-hash (so far: Alice pays Bob)

pay-to-script-hash

RIPEMD160(SHA256(script))

Each transaction, including P2PKH, contains a
locking and an unlocking script (locking from
output; unlocking from input).
The scripts are written in a Forth-like language
(stack based).
Running both scripts has to evaluate to True.

SEN 08, King’s College London – p. 6/30



Types of Transactions
pay-to-public-key-hash (so far: Alice pays Bob)
pay-to-script-hash

RIPEMD160(SHA256(script))

Each transaction, including P2PKH, contains a
locking and an unlocking script (locking from
output; unlocking from input).
The scripts are written in a Forth-like language
(stack based).
Running both scripts has to evaluate to True.

SEN 08, King’s College London – p. 6/30



Types of Transactions
pay-to-public-key-hash (so far: Alice pays Bob)
pay-to-script-hash

RIPEMD160(SHA256(script))

Each transaction, including P2PKH, contains a
locking and an unlocking script (locking from
output; unlocking from input).
The scripts are written in a Forth-like language
(stack based).
Running both scripts has to evaluate to True.

SEN 08, King’s College London – p. 6/30



Pay-to-Public-Key-Hash
Alice pays Bob:
<Bob’s signature> (unlocking script from input)
<Bob’s PKey>

OP_DUP (locking script from output)
OP_HASH160
<Bob’s PKey Hash>
OP_EQUALVERIFY
OP_CHECKSIG

SEN 08, King’s College London – p. 7/30



A Transaction Msg
{”hash”:”7c4025...”,
”ver”:1,
”vin_sz”:1,
”vout_sz”:1,
”lock_time”:0,
”size”:224,
”in”:[

{”prev_out”:
{”hash”:”2007ae...”,
”n”:0},
”scriptSig”:”304502... 042b2d...”}],

”out”:[
{”value”:”0.31900000”,
”scriptPubKey”:”OP_DUP OP_HASH160 a7db6f...

OP_EQUALVERIFY OP_CHECKSIG”}]}

SEN 08, King’s College London – p. 8/30



A Transaction Msg
{”hash”:”7c4025...”,
”ver”:1,
”vin_sz”:1,
”vout_sz”:1,
”lock_time”:0,
”size”:224,
”in”:[

{”prev_out”:
{”hash”:”2007ae...”,
”n”:0},
”scriptSig”:”304502... 042b2d...”}],

”out”:[
{”value”:”0.31900000”,
”scriptPubKey”:”OP_DUP OP_HASH160 a7db6f...

OP_EQUALVERIFY OP_CHECKSIG”}]}

SEN 08, King’s College London – p. 8/30

Question: Sender and receiver are the same;
same amount (no time stamps).
Can 2 transactions be exactly the same?



Pay-to-Script-Hash
Bob wants to implement a multi-key/signature
scheme in his company:
Bob tells Alice the hash of a locking script:
Alice sends the payment to this “hash address”

Bob has to supply the locking script matching
this hash, and the unlocking script

Bob can use this payment to implement
2-out-of-3 signature procedures

SEN 08, King’s College London – p. 9/30



Pay-to-Script-Hash
Bob wants to implement a multi-key/signature
scheme in his company:
Bob tells Alice the hash of a locking script:
Alice sends the payment to this “hash address”

Bob has to supply the locking script matching
this hash, and the unlocking script

Bob can use this payment to implement
2-out-of-3 signature procedures

SEN 08, King’s College London – p. 9/30



Blockchain (Public Ledger)

each block is hashed and contains a reference to
the earlier block; “validates” potentially more
than one transaction

SEN 08, King’s College London – p. 10/30



Proof-of-Work
The idea is counterintuitive and involves a
combination of two ideas:

to (artificially) make it computationally
costly for network users to validate
transactions, and
to reward them for trying to help validate
transactions

this is called mining: whoever validates a transaction will be
awarded with 50 bitcoins — this halves every 210,000
transactions or roughly every 4 years (currently 25 BC); no
new bitcoins after 2140 – then only transaction fees

SEN 08, King’s College London – p. 11/30



Proof-of-Work
The idea is counterintuitive and involves a
combination of two ideas:

to (artificially) make it computationally
costly for network users to validate
transactions, and
to reward them for trying to help validate
transactions

this is called mining: whoever validates a transaction will be
awarded with 50 bitcoins — this halves every 210,000
transactions or roughly every 4 years (currently 25 BC); no
new bitcoins after 2140 – then only transaction fees

SEN 08, King’s College London – p. 11/30



Solving Puzzles
Given a string, say ”Hello, world!”, what is the
salt so the hash starts with a long run of zeros?

h(”Hello, world!0”) =
1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64

h(”Hello, world!1”) =
e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a9332a7d8
…
h(”Hello, world!4250”) =
0000c3af42fc31103f1fdc0151fa747ff87349a4714df7cc52ea464e12dcd4e9

SEN 08, King’s College London – p. 12/30



Solving Puzzles
Given a string, say ”Hello, world!”, what is the
salt so the hash starts with a long run of zeros?

h(”Hello, world!0”) =
1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64
h(”Hello, world!1”) =
e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a9332a7d8

…
h(”Hello, world!4250”) =
0000c3af42fc31103f1fdc0151fa747ff87349a4714df7cc52ea464e12dcd4e9

SEN 08, King’s College London – p. 12/30



Solving Puzzles
Given a string, say ”Hello, world!”, what is the
salt so the hash starts with a long run of zeros?

h(”Hello, world!0”) =
1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64
h(”Hello, world!1”) =
e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a9332a7d8
…
h(”Hello, world!4250”) =
0000c3af42fc31103f1fdc0151fa747ff87349a4714df7cc52ea464e12dcd4e9

SEN 08, King’s College London – p. 12/30



Hardness
If we want the output hash value to begin with 10
zeroes, say, then we will need, on average, to try
1610 ≈ 1012 different salts before we find a suitable
nonce.
Hardness can be controlled by setting a target
(maximum number).

SEN 08, King’s College London – p. 13/30



How to Adjust the Target?
every 2016 blocks the hardness is adjusted
(app 2 weeks)

New
Difficulty

def
=

Old
Difficulty ∗

Actual time for the last 2016 blocks
20160

SEN 08, King’s College London – p. 14/30



Hardness
for example block #277,316 has the hardness

0x1903a30c
where 19 is the exponent and 03a30c is the
coefficient.

target def
= coeffcient ∗ 28∗(exponent−3)

in this example the hash has to be smaller that
0x0000000000000003A30C000000000000

00000000000000000000000000000000

It is fun to see that nowadays mining equipment is so efficient that the
hardness is closely related to the cost of electricity.

SEN 08, King’s College London – p. 15/30



Hardness
for example block #277,316 has the hardness

0x1903a30c
where 19 is the exponent and 03a30c is the
coefficient.

target def
= coeffcient ∗ 28∗(exponent−3)

in this example the hash has to be smaller that
0x0000000000000003A30C000000000000

00000000000000000000000000000000

It is fun to see that nowadays mining equipment is so efficient that the
hardness is closely related to the cost of electricity.

SEN 08, King’s College London – p. 15/30



Bitcoin Schedule
every 210000 blocks the amount of bitcoins to be
mined halves (“reward era”)

2009 2011 2013 2015 2017 2019 2021 2023 2025
0

20

40

60

80

100

year

%
 o

f t
ot

al
 b

itc
oi

ns

plan

SEN 08, King’s College London – p. 16/30



Bitcoin Schedule
every 210000 blocks the amount of bitcoins to be
mined halves (“reward era”)

2009 2011 2013 2015 2017 2019 2021 2023 2025
0

20

40

60

80

100

year

%
 o

f t
ot

al
 b

itc
oi

ns

plan
in reality 2% ahead

SEN 08, King’s College London – p. 16/30



Order of Transactions
If we don’t have such an ordering at any given
moment then it may not be clear who owns which
Bitcoins.

Say, miner David is lucky and finds a suitable salt to confirm
the transactions. Celebration!

??

SEN 08, King’s College London – p. 17/30



Order of Transactions
If we don’t have such an ordering at any given
moment then it may not be clear who owns which
Bitcoins.

Say, miner David is lucky and finds a suitable salt to confirm
the transactions. Celebration! ??

SEN 08, King’s College London – p. 17/30



Forks
Typically the blockchain will look as follows

But every so often there is a fork

…bugger this is exactly what we are trying to avoid

SEN 08, King’s College London – p. 18/30



Forks
Typically the blockchain will look as follows

But every so often there is a fork

…bugger this is exactly what we are trying to avoid
SEN 08, King’s College London – p. 18/30



The tie is broken if another block is solved

The rule is: if a fork occurs, people on the network keep
track of all forks. But at any given time, miners only work to
extend whichever fork is longest in their copy of the block
chain.

SEN 08, King’s College London – p. 19/30



Double Spending
So if Alice wants to fake it, she needs to produce a
longer chain:

SEN 08, King’s College London – p. 20/30



Racing Against the World

A transaction is “confirmed” if:
(1) it is part of a block in the longest fork, and (2) at least 5
blocks follow it in the longest fork. In this case we say that
the transaction has “6 confirmations”.

(might take 1h+…but for creditcards you have 6 months chargeback)

SEN 08, King’s College London – p. 21/30



Racing Against the World

A transaction is “confirmed” if:
(1) it is part of a block in the longest fork, and (2) at least 5
blocks follow it in the longest fork. In this case we say that
the transaction has “6 confirmations”.

(might take 1h+…but for creditcards you have 6 months chargeback)

SEN 08, King’s College London – p. 21/30



Mining Pools
On average, it would take several years for a
typical computer to solve a block, so an
individual’s chance of ever solving one before
the rest of the network, which typically takes
10 minutes, is negligibly low.

Many people join groups called mining pools that
collectively work to solve blocks, and distribute rewards
based on work contributed. These act somewhat like lottery
pools among co-workers, except that some of these pools are
quite large, and comprise more than 20% of all the
computers in the network.
BTCC, the largest mining pool, has limited its members to not solve
more than 6 blocks in a row. https://blockchain.info/pools

SEN 08, King’s College London – p. 22/30

https://blockchain.info/pools


Mining Pools
On average, it would take several years for a
typical computer to solve a block, so an
individual’s chance of ever solving one before
the rest of the network, which typically takes
10 minutes, is negligibly low.

Many people join groups called mining pools that
collectively work to solve blocks, and distribute rewards
based on work contributed. These act somewhat like lottery
pools among co-workers, except that some of these pools are
quite large, and comprise more than 20% of all the
computers in the network.
BTCC, the largest mining pool, has limited its members to not solve
more than 6 blocks in a row. https://blockchain.info/pools

SEN 08, King’s College London – p. 22/30

https://blockchain.info/pools


Bitcoins for Real
you need a public-private key (the hash of the
public key to determines your bitcoin address)
if you want to receive bitcoins, you publicise this
address
there are 2160 possibilities
(no check for duplicates)

transactions contain “payment scripts”
(non-Turing-complete scripting language)

simplest script: pay-to-public-key

SEN 08, King’s College London – p. 23/30



Bitcoins for Real
you need a public-private key (the hash of the
public key to determines your bitcoin address)
if you want to receive bitcoins, you publicise this
address
there are 2160 possibilities
(no check for duplicates)

transactions contain “payment scripts”
(non-Turing-complete scripting language)

simplest script: pay-to-public-key

SEN 08, King’s College London – p. 23/30



Multi-Signature Addresses
…Bitcoin Improvement Proposal

pay-to-public-key (explained so far)
pay-to-script-hash (since 2012)

can specify: requires M out of N signatures
for example
1-of-2: me and my wife, or
2-of-2 in banking/companies

SEN 08, King’s College London – p. 24/30



Multi-Signature Addresses
…Bitcoin Improvement Proposal

pay-to-public-key (explained so far)
pay-to-script-hash (since 2012)

can specify: requires M out of N signatures
for example
1-of-2: me and my wife, or
2-of-2 in banking/companies

SEN 08, King’s College London – p. 24/30



Multi-Signature Addresses
…Bitcoin Improvement Proposal

pay-to-public-key (explained so far)
pay-to-script-hash (since 2012)

can specify: requires M out of N signatures
for example
1-of-2: me and my wife, or
2-of-2 in banking/companies

SEN 08, King’s College London – p. 24/30



Dispute Mediation
say, client and (online) merchant do not trust
each other

2-of-3: mutually trusted escrow service
1 client sends money to 2-of-3 transaction
2 merchant sends out goods
3 if goods are OK, client sends signed transaction to

merchant, merchant can sign and receive the money
(publish in blockchain)

4 if goods are defective, merchant sends signed
transaction to client, client can sign and receive the
money back

5 if client and merchant disagree, then they ask escrow
servive who signs a transaction and sends it to “winning”
party

SEN 08, King’s College London – p. 25/30



Dispute Mediation
say, client and (online) merchant do not trust
each other

2-of-3: mutually trusted escrow service
1 client sends money to 2-of-3 transaction
2 merchant sends out goods
3 if goods are OK, client sends signed transaction to

merchant, merchant can sign and receive the money
(publish in blockchain)

4 if goods are defective, merchant sends signed
transaction to client, client can sign and receive the
money back

5 if client and merchant disagree, then they ask escrow
servive who signs a transaction and sends it to “winning”
party

SEN 08, King’s College London – p. 25/30



A Block in the Blockchain

each block is hashed and contains a reference to
the earlier block
contains the “salt” and address of whoever solved
the puzzle

SEN 08, King’s College London – p. 26/30



Transaction History
you can follow back the transaction history until
you reach either
the genesis block (a transaction without input of
50 bitcoins), or
a coinbase transaction (this is the reward of the
miner who validated a block of transactions in
the blockchain)

SEN 08, King’s College London – p. 27/30



Lost Bitcoins?
somebody needs to be able to generate a key-pair
for the signature (for this you need the private
key)

somebody spends your bitcoins fraudulently (you
cannot charge them back)… bad luck
you can send bitcoins to a “non-existing” address
(Mt. Gox)

SEN 08, King’s College London – p. 28/30



Good Points
An attacker can’t:
reverse other people’s transactions
change the number of coins generated per block
create coins out of thin air
send coins that never belonged to an attacker
you cannot meddle with the “history”

The system can be scaled to all world transactions.

SEN 08, King’s College London – p. 29/30



Take Home Points
Don’t gamble! I am not a first mover in such
things.
Cool idea, but I am sure there will be a
Bitcoin 2.0.
It still depends on a lot of old-fashioned security
(e.g. keeping private-keys secret)

Having now the knowledge how it works, go back
and listen to what people/media make of it.

SEN 08, King’s College London – p. 30/30


