Access Control and
Privacy Policies (6)

Email: christian.urban at kcl.ac.uk
Office: S51.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

1st Week

@ What are hashes and salts?

1st Week

@ What are hashes and salts?

@ ...can be use to store securely data on a client,
but you cannot make your protocol dependent on
the presence of the data

1st Week

@ What are hashes and salts?

@ ...can be use to store securely data on a client,
but you cannot make your protocol dependent on
the presence of the data

@ ...can be used to store and verify passwords

2nd Week

@ Buffer overflows

@ choice of programming language can mitigate or
even eliminate this problem

3rd Week

@ defence in depth

@ privilege separation afforded by the OS

Monitor

privileged
process

<

Slave

Slave

unprivileged
processes

H Internet

4th Week

@ voting...has security requirements that are in
tension with each other
integrity vs ballot secrecy
authentication vs enfranchisment

@ electronic voting makes 'whole sale’ fraud easier
as opposed to 'retail attacks'

S5th Week

@ access control logic

@ formulas
@ judgements
@ inference rules

Access Control Logic

Formulas
F

n= frue

| false

| FAF

| FVF

| F=F

| p (t1,eee.Tn)
| PsaysF "saying predicate”
Judgements

T+F

Inference Rules

I.FFF
ITFF,=F T+F F,T+ F
I' - F ' F, = F,
' F
I' = Psays F

T+ Psays(Fy = F,) T F PsaysF,
'+ PSGYSF2

Proofs

T F

The Access Control Problem

Access Policy (T')

¥

access AC-
request _) Checker: provable/

] applies) not provable
(F) inference

rules

Recall the following scenario:
@ If Admin says that file should be deleted, then
this file must be deleted.

@ Admin trusts Bob to decide whether file should
be deleted.

@ Bob wants to delete file.

(Admin says del_file) = del_file,
I' = (Admin says ((Bob says del_file) = del_file)),
Bob says del_file

I' - del_file

How to prove I' = F'?

ILFF-F

F,TFF

I'=F = F,

I' = F

I' = Psays F

- F
I' = Fy I 9

I' = Fy VvV F I'=FyV F

I'-Fy, THEF,

I' = Fi N\ F

I want to prove I' = Pred

I want to prove I' = Pred

© I found that I' contains the assumption F; = F

I want to prove I' = Pred

© I found that I' contains the assumption F; = F

@ IfIcanprovel - Fi,

I want to prove I' = Pred

© I found that I' contains the assumption F; = F

@ IfIcanprovel - Fi,thenI can prove
I' = Fy

'-F=F, TFHEF
I' - F,

I want to prove I' = Pred

© I found that I' contains the assumption F; = F

@ IfIcanprovel - Fi,thenI can prove
I' = Fy

© So better I try to prove I' - Pred with the
additional assumption F.

F,, T F Pred

@ P isentitled to do F'
P controls F £ (Psays F) = F

I' = Pcontrols FF T + Psays F
'+ F

@ P speaks for Q

def

P— Q = VF.(Psays F) = (Q says F)
'HP—Q I'+ PsaysF
I' - Qsays F

'HP— Q@ T+ Qcontrols F
I' = P controls F

Protocol Specifications

The Needham-Schroeder Protocol:

Messagel A — S:A, B, N4

Message 2 S—> A :{NA,B,KAB, {KAB’A}KBS}KAS
Message 3 A — B : {Kap, A} kps

MCSSGg€4 B— A :{NB}KAB

Message5 A — B : {Np — 1}k,

Trusted Third Party

Simple protocol for establishing a secure
connection via a mutually frusted 3rd party
(server):

Messagel A — S:A,B

Message 2 S— A :{KAB}KAS and {{KAB}KBS}KAS
Message 3 A — B : {K B}k,

Message 4 A — B :{m}k,,

Sending Messages

@ Alice sends a message m
Alice says m

Sending Messages

@ Alice sends a message m
Alice says m

@ Alice sends an encrypted message m
(with key K)
Alice says {m}x

Sending Messages

@ Alice sends a message m
Alice says m

@ Alice sends an encrypted message m
(with key K)
Alice says {m}x

@ Decryption of Alice's message
I' - Alice says {m}k T F Alicesays K

I' = Alice says m

Encryption

@ Encryption of a message
I' = Alice says m T I Alice says K

I' - Alice says {m}k

Public/Private Keys

@ Bob has a private and public key: K% KV

T + Alice says {m}Kfé"'z’, I'H ng:
I' - Alice says m

Public/Private Keys

@ Bob has a private and public key: K% KV

T + Alice says {m}Kfé”Z I'H ng:
I' - Alice says m

@ this is not a derived rule!

Trusted Third Party

@ Alice calls Sam for a key to communicate with Bob

@ Sam responds with a key that Alice can read and
a key Bob can read (pre-shared)

@ Alice sends the message encrypted with the key
and the second key it recieved

A sends S
S sends A
A sends B
A sends B

Connect(A, B)

{KaB}k,s and {{KaB}Kps}Kas
{KAB}KBS

{m}KAB

Sending Rule

I'-Psays F T PsendsQ: F
I' - Q says F

Sending Rule

I'-Psays F T PsendsQ: F

I' - Q says F

def

Psends@Q : F =
(Psays F') = (Qsays F)

Trusted Third Party

A sends S : Connect(A, B)
S says (Connect(A, B) =
{KAB}KAS A {{KAB}KBS}KAS)

Ssends A: {Kap}ras N {{KaB}Kps}Kas
Asends B: {Kap}tk,,

Asends B: {m}k,,

Trusted Third Party

A sends S : Connect(A, B)
S says (Connect(A, B) =
{KAB}KAS A {{KAB}KBS}KAS)

Ssends A: {Kap}ras N {{KaB}Kps}Kas
Asends B: {Kap}tk,,

Asends B: {m}k,,

I' = B says m?

