
Security Engineering (4)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

SEN 04, King’s College London – p. 1/56

last week: buffer overflow attacks

no “cheating” needed for format string attacks
the main point: no cheating to start with

SEN 04, King’s College London – p. 2/56

Case-In-Point: Android

a list of common Android vulnerabilities (5 BOAs
out of 35 vulnerabilities; all from 2013 and later)

http://androidvulnerabilities.org/

a paper that attempts measures security of
Android phones

“We find that on average 87.7% of Android devices
are exposed to at least one of 11 known critical
vulnerabilities…”

https://www.cl.cam.ac.uk/~drt24/papers/spsm-scoring.pdf

SEN 04, King’s College London – p. 3/56

http://androidvulnerabilities.org/
https://www.cl.cam.ac.uk/~drt24/papers/spsm-scoring.pdf

A student asked:

How do we implement BOAs? On a webpage login, for
example Facebook, we can’t do this. I am sure the script
will stop us even before we reach the server. The script
will not let us enter hexadecimal numbers where email
or username is required and plus it will have a max
length, like 32 characters only. In this case, what can we
do, since the method you showed us wouldn’t work?

Facebook no
printers, routers, cars, IoT etc likely
I do not want to teach you hacking, rather
defending

SEN 04, King’s College London – p. 4/56

A student asked:

How do we implement BOAs? On a webpage login, for
example Facebook, we can’t do this. I am sure the script
will stop us even before we reach the server. The script
will not let us enter hexadecimal numbers where email
or username is required and plus it will have a max
length, like 32 characters only. In this case, what can we
do, since the method you showed us wouldn’t work?

Facebook no
printers, routers, cars, IoT etc likely

I do not want to teach you hacking, rather
defending

SEN 04, King’s College London – p. 4/56

A student asked:

How do we implement BOAs? On a webpage login, for
example Facebook, we can’t do this. I am sure the script
will stop us even before we reach the server. The script
will not let us enter hexadecimal numbers where email
or username is required and plus it will have a max
length, like 32 characters only. In this case, what can we
do, since the method you showed us wouldn’t work?

Facebook no
printers, routers, cars, IoT etc likely
I do not want to teach you hacking, rather
defending

SEN 04, King’s College London – p. 4/56

Survey

SEN 04, King’s College London – p. 5/56

last week: buffer overflow attacks

SEN 04, King’s College London – p. 6/56

Two General Counter
Measures against BOAs etc
Both try to reduce the attack surface:

unikernels – the idea is to not have an operating
system at all
all functionality of the server is implemented in a
single, stand-alone program
all functionality an operating system would
normally provide (network stack, file system) is
available through libraries
the best known unikernel is MirageOS using
Ocaml (https://mirage.io)

SEN 04, King’s College London – p. 7/56

https://mirage.io

Network Applications:
Privilege Separation

Internet
Application Interface

unprivileged
process

privileged
process

the idea is make the attack surface smaller and
mitigate the consequences of an attack

SEN 04, King’s College London – p. 8/56

Access Control in Unix
access control provided by the OS
authenticate principals
mediate access to files, ports, processes etc
according to roles (user ids)
roles get attached with privileges (some special
roles: root)

principle of least privilege:
users and programs should only have
as much privilege as they need to
accomplish a task

SEN 04, King’s College London – p. 9/56

Access Control in Unix (2)

privileges are specified by file access permissions
(“everything is a file”)

there are 9 (plus 2) bits that specify the
permissions of a file

-︸︷︷︸
directory

r--︸ ︷︷ ︸
user

rw-︸ ︷︷ ︸
group

rwx︸ ︷︷ ︸
other

bob staff file

SEN 04, King’s College London – p. 10/56

Unix-Style Access Control
Q: “I am using Windows. Why should I care?”
A: In Windows you have similar AC:

administrators group
(has complete control over the machine)

authenticated users
server operators
power users
network configuration operators

Modern versions of Windows have more fine-grained AC
than Unix; they do not have a setuid bit, but have runas
(asks for a password).

OS-provided access control can add to your security.
(defence in depth)

SEN 04, King’s College London – p. 11/56

Unix-Style Access Control
Q: “I am using Windows. Why should I care?”
A: In Windows you have similar AC:

administrators group
(has complete control over the machine)

authenticated users
server operators
power users
network configuration operators

Modern versions of Windows have more fine-grained AC
than Unix; they do not have a setuid bit, but have runas
(asks for a password).

OS-provided access control can add to your security.
(defence in depth)

SEN 04, King’s College London – p. 11/56

Weaknesses of Unix AC

Not just restricted to Unix:
if you have too many roles (i.e. too finegrained
AC), then hierarchy is too complex
you invite situations like…let’s be root

you can still abuse the system…

SEN 04, King’s College London – p. 12/56

A “Cron”-Attack

The idea is to trick a privileged person to do
something on your behalf:
root:
rm /tmp/*/*

the shell behind the scenes:
rm /tmp/dir1/file1 /tmp/dir1/file2 /tmp/dir2/file1 …

this takes time

SEN 04, King’s College London – p. 13/56

A “Cron”-Attack

The idea is to trick a privileged person to do
something on your behalf:
root:
rm /tmp/*/*

the shell behind the scenes:
rm /tmp/dir1/file1 /tmp/dir1/file2 /tmp/dir2/file1 …

this takes time

SEN 04, King’s College London – p. 13/56

A “Cron”-Attack
1 attacker (creates a fake passwd file)

mkdir /tmp/a; cat > /tmp/a/passwd
2 root (does the daily cleaning)

rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

4 root now deletes the real passwd file
SEN 04, King’s College London – p. 14/56

A “Cron”-Attack
1 attacker (creates a fake passwd file)

mkdir /tmp/a; cat > /tmp/a/passwd
2 root (does the daily cleaning)

rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

4 root now deletes the real passwd file
SEN 04, King’s College London – p. 14/56

To prevent this kind of attack, you
need additional policies (don’t do
such operations as root).

Infamous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …

for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

SEN 04, King’s College London – p. 15/56

Infamous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …

mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

SEN 04, King’s College London – p. 15/56

Infamous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

SEN 04, King’s College London – p. 15/56

Infamous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

SEN 04, King’s College London – p. 15/56

Only failure makes us experts. – Theo
de Raadt (OpenBSD, OpenSSH)

Subtleties

Can Bob write file?

What if Bob is member of staff?

-︸︷︷︸
directory

r--︸︷︷︸
user

rw-︸︷︷︸
group

rwx︸︷︷︸
other

bob staff file

SEN 04, King’s College London – p. 16/56

Subtleties

Can Bob write file?
What if Bob is member of staff?

-︸︷︷︸
directory

r--︸︷︷︸
user

rw-︸︷︷︸
group

rwx︸︷︷︸
other

bob staff file

SEN 04, King’s College London – p. 16/56

Login Processes

login processes run under UID = 0

ps -axl | grep login

after login, shells run under UID = user (e.g. 501)

id cu

non-root users are not allowed to change the
UID — would break access control
but needed for example for accessing passwd

SEN 04, King’s College London – p. 17/56

Login Processes

login processes run under UID = 0

ps -axl | grep login

after login, shells run under UID = user (e.g. 501)

id cu

non-root users are not allowed to change the
UID — would break access control
but needed for example for accessing passwd

SEN 04, King’s College London – p. 17/56

Setuid and Setgid
The solution is that Unix file permissions are 9 +
2 Bits: Setuid and Setgid bits
When a file with setuid is executed, the resulting
process will assume the UID given to the owner
of the file.
This enables users to create processes as root (or
another user).

Essential for changing passwords, for example.

chmod 4755 fobar_file

SEN 04, King’s College London – p. 18/56

$ ls -ld . * */*
drwxr-xr-x ping staff 32768 Apr 2 2010 .
-rw----r-- ping students 31359 Jul 24 2011 manual.txt
-r--rw--w- bob students 4359 Jul 24 2011 report.txt
-rwsr--r-x bob students 141359 Jun 1 2013 microedit
dr--r-xr-x bob staff 32768 Jul 23 2011 src
-rw-r--r-- bob staff 81359 Feb 28 2012 src/code.c
-r--rw---- emma students 959 Jan 23 2012 src/code.h

members of group staff: ping, bob, emma
members of group students: emma

manual.txt report.txt microedit src/code.c src/code.h
ping
bob

emma

SEN 04, King’s College London – p. 19/56

Discretionary Access Control

Access to objects (files, directories, devices, etc.) is
permitted based on user identity. Each object is owned by a
user. Owners can specify freely (at their discretion) how
they want to share their objects with other users, by
specifying which other users can have which form of access
to their objects.

Discretionary access control is implemented on any
modern multi-user OS (Unix, Windows NT, etc.).

SEN 04, King’s College London – p. 20/56

Mandatory Access Control
Access to objects is controlled by a system-wide policy, for
example to prevent certain flows of information. In some
forms, the system maintains security labels for both objects
and subjects (processes, users) based on which access is
granted or denied. Labels can change as the result of an
access. Security policies are enforced without the
cooperation of users or programs.

This is implemented in banking or military operating
system versions (SELinux).

A simple example: Air Gap Security. Uses a completely
separate network and computer hardware for different
application classes (Bin Laden, Bruce Schneier had airgaps).

What do we want to protect: Secrecy or Integrity?

SEN 04, King’s College London – p. 21/56

Mandatory Access Control
Access to objects is controlled by a system-wide policy, for
example to prevent certain flows of information. In some
forms, the system maintains security labels for both objects
and subjects (processes, users) based on which access is
granted or denied. Labels can change as the result of an
access. Security policies are enforced without the
cooperation of users or programs.

This is implemented in banking or military operating
system versions (SELinux).

A simple example: Air Gap Security. Uses a completely
separate network and computer hardware for different
application classes (Bin Laden, Bruce Schneier had airgaps).

What do we want to protect: Secrecy or Integrity?

SEN 04, King’s College London – p. 21/56

Mandatory Access Control
Access to objects is controlled by a system-wide policy, for
example to prevent certain flows of information. In some
forms, the system maintains security labels for both objects
and subjects (processes, users) based on which access is
granted or denied. Labels can change as the result of an
access. Security policies are enforced without the
cooperation of users or programs.

This is implemented in banking or military operating
system versions (SELinux).

A simple example: Air Gap Security. Uses a completely
separate network and computer hardware for different
application classes (Bin Laden, Bruce Schneier had airgaps).

What do we want to protect: Secrecy or Integrity?
SEN 04, King’s College London – p. 21/56

The Bell-LaPadula Model

Formal policy model for mandatory access control in a
military multi-level security environment. All subjects
(processes, users, terminals, files, windows, connections) are
labeled with a confidentiality level, e.g.

unclassified < confidential < secret < top secret

The system policy automatically prevents the flow of
information from high-level objects to lower levels. A
process that reads top secret data becomes tagged as top
secret by the operating system, as will be all files into which
it writes afterwards.

SEN 04, King’s College London – p. 22/56

Bell-LaPadula

Read Rule: A principal P can read an object O if and only if
P’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P’s.

This restricts information flow ⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’

SEN 04, King’s College London – p. 23/56

Bell-LaPadula

Read Rule: A principal P can read an object O if and only if
P’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P’s.

This restricts information flow ⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’

SEN 04, King’s College London – p. 23/56

Principle of
Least Privilege

A principal should have as few privileges as
possible to access a resource.

Bob (TS) and Alice (S) want to communicate

⇒ Bob should lower his security level

SEN 04, King’s College London – p. 24/56

Biba Policy
Data Integrity (rather than data secrecy)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only if
P’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P’s.

E.g. Firewalls: you can read from inside the firewall, but not
from outside
Phishing: you can look at an approved PDF, but not one
from a random email

SEN 04, King’s College London – p. 25/56

Biba Policy
Data Integrity (rather than data secrecy)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only if
P’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P’s.

E.g. Firewalls: you can read from inside the firewall, but not
from outside
Phishing: you can look at an approved PDF, but not one
from a random email

SEN 04, King’s College London – p. 25/56

Security Levels (2)

Bell-La Padula preserves data secrecy, but not
data integrity

Biba model is for data integrity
read: your own level and above
write: your own level and below

SEN 04, King’s College London – p. 26/56

Security Levels (2)

Bell-La Padula preserves data secrecy, but not
data integrity

Biba model is for data integrity
read: your own level and above
write: your own level and below

SEN 04, King’s College London – p. 26/56

Shared Access Control

SEN 04, King’s College London – p. 27/56

To take an action you
need at least either:

1 CEO
2 MDs, or
3 Ds

Lessons from Access Control

Not just restricted to Unix:
if you have too many roles (i.e. too finegrained
AC), then hierarchy is too complex
you invite situations like…lets be root

you can still abuse the system…

SEN 04, King’s College London – p. 28/56

Protocols

Other examples: Wifi, Http-request,
TCP-request, card readers, RFID (passports)…

The point is that we cannot control the network:
An attacker can install a packet sniffer, inject
packets, modify packets, replay messages…fake
pretty much everything.

SEN 04, King’s College London – p. 29/56

Protocols

Other examples: Wifi, Http-request,
TCP-request, card readers, RFID (passports)…
The point is that we cannot control the network:
An attacker can install a packet sniffer, inject
packets, modify packets, replay messages…fake
pretty much everything.

SEN 04, King’s College London – p. 29/56

Keyless Car Transponders

There are two security mechanisms: one remote
central locking system and one passive RFID tag
(engine immobiliser).
How can I get in? How can thieves be kept out?
How to avoid MITM attacks?

Papers: Gone in 360 Seconds: Hijacking with Hitag2,
Dismantling Megamos Crypto: Wirelessly Lockpicking

a Vehicle Immobilizer
SEN 04, King’s College London – p. 30/56

HTTPS / GSM

I am sitting at Starbuck. How can I be sure I am
really visiting Barclays? I have no control of the
access point.
How can I achieve that a secret key is established
in order to encrypt my mobile conversation? I
have no control over the access points.

SEN 04, King’s College London – p. 31/56

Handshakes

starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

SEN 04, King’s College London – p. 32/56

Handshakes

starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

SEN 04, King’s College London – p. 32/56

SYNflood
attacks:

Protocols

A → B : . . .

B → A : . . .
:

by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)

SEN 04, King’s College London – p. 33/56

Protocols

A → B : . . .
B → A : . . .

:
by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)

SEN 04, King’s College London – p. 33/56

Handshakes
starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

A → S: SYN
S → A: SYN-ACK
A → S: ACK

SEN 04, King’s College London – p. 34/56

Cryptographic Protocol Failures

Ross Anderson and Roger Needham wrote:

A lot of the recorded frauds were the result of
this kind of blunder, or from management
negligence pure and simple. However, there
have been a significant number of cases where
the designers protected the right things, used
cryptographic algorithms which were not
broken, and yet found that their systems were
still successfully attacked.

SEN 04, King’s College London – p. 35/56

Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not
allow unauthorised use for more than a day, as
TfL promises to turn off any cloned cards within
24 hours…”

SEN 04, King’s College London – p. 36/56

Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not
allow unauthorised use for more than a day, as
TfL promises to turn off any cloned cards within
24 hours…”

SEN 04, King’s College London – p. 36/56

Wirelessly Pickpocketing a Mifare Classic Card

The Mifare Classic is the most widely used contactless smartcard on the
market. The stream cipher CRYPTO1 used by the Classic has recently
been reverse engineered and serious attacks have been proposed. The
most serious of them retrieves a secret key in under a second. In order to
clone a card, previously proposed attacks require that the adversary either
has access to an eavesdropped communication session or executes a
message-by-message man-in-the-middle attack between the victim and a
legitimate reader. Although this is already disastrous from a cryptographic
point of view, system integrators maintain that these attacks cannot be
performed undetected.
This paper proposes four attacks that can be executed by an adversary
having only wireless access to just a card (and not to a legitimate reader).
The most serious of them recovers a secret key in less than a second on
ordinary hardware. Besides the cryptographic weaknesses, we exploit
other weaknesses in the protocol stack. A vulnerability in the
computation of parity bits allows an adversary to establish a side channel.
Another vulnerability regarding nested authentications provides enough
plaintext for a speedy known-plaintext attack. (a paper from 2009)

Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not
allow unauthorised use for more than a day, as
TfL promises to turn off any cloned cards within
24 hours…”

SEN 04, King’s College London – p. 36/56

Another Example
In an email from Ross Anderson

From: Ross Anderson <Ross.Anderson@cl.cam.ac.uk>
Sender: cl-security-research-bounces@lists.cam.ac.uk
To: cl-security-research@lists.cam.ac.uk
Subject: Birmingham case
Date: Tue, 13 Aug 2013 15:13:17 +0100

SEN 04, King’s College London – p. 37/56

Another Example
In an email from Ross Anderson

From: Ross Anderson <Ross.Anderson@cl.cam.ac.uk>
Sender: cl-security-research-bounces@lists.cam.ac.uk
To: cl-security-research@lists.cam.ac.uk
Subject: Birmingham case
Date: Tue, 13 Aug 2013 15:13:17 +0100

SEN 04, King’s College London – p. 37/56

As you may know, Volkswagen got an injunction against the University of
Birmingham suppressing the publication of the design of a weak cipher
used in the remote key entry systems in its recent-model cars. The paper
is being given today at Usenix, minus the cipher design.

I’ve been contacted by Birmingham University’s lawyers who seek to prove
that the cipher can be easily obtained anyway. They are looking for a
student who will download the firmware from any newish VW,
disassemble it and look for the cipher. They’d prefer this to be done by a
student rather than by a professor to emphasise how easy it is.

Volkswagen’s argument was that the Birmingham people had reversed a
locksmithing tool produced by a company in Vietnam, and since their key
fob chip is claimed to be tamper-resistant, this must have involved a
corrupt insider at VW or at its supplier Thales. Birmingham’s argument is
that this is nonsense as the cipher is easy to get hold of. Their lawyers feel
this argument would come better from an independent outsider.

Let me know if you’re interested in having a go, and I’ll put you in touch
Ross

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Passwords:

B → A : KAB

Problem: Eavesdropper can capture the secret and
replay it; A cannot confirm the identity of B

SEN 04, King’s College London – p. 38/56

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Passwords:

B → A : KAB

Problem: Eavesdropper can capture the secret and
replay it; A cannot confirm the identity of B

SEN 04, King’s College London – p. 38/56

Authentication?

SEN 04, King’s College London – p. 39/56

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Simple Challenge Response:

A → B : N
B → A : {N}KAB

SEN 04, King’s College London – p. 40/56

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Mutual Challenge Response:

A → B : NA
B → A : {NA,NB}KAB
A → B : NB

SEN 04, King’s College London – p. 41/56

Nonces
1 I generate a nonce (random number) and send it

to you encrypted with a key we share
2 you increase it by one, encrypt it under a key I

know and send it back to me
I can infer:
you must have received my message
you could only have generated your answer after I
send you my initial message
if only you and me know the key, the message
must have come from you

SEN 04, King’s College London – p. 42/56

A → B: NA
B → A: {NA,NB}KAB
A → B: NB

The attack (let A decrypt her own messages):

A → E: NA
E → A: NA
A → E: {NA,N′

A}KAB
E → A: {NA,N′

A}KAB
A → E: N′

A (= NB)

Solutions: KAB ̸= KBA or include an id in the second
message

SEN 04, King’s College London – p. 43/56

A → B: NA
B → A: {NA,NB}KAB
A → B: NB

The attack (let A decrypt her own messages):

A → E: NA
E → A: NA
A → E: {NA,N′

A}KAB
E → A: {NA,N′

A}KAB
A → E: N′

A (= NB)

Solutions: KAB ̸= KBA or include an id in the second
message

SEN 04, King’s College London – p. 43/56

Encryption to the Rescue?

A → B : {A,NA}KAB encrypted

B → A : {NA,K′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities

SEN 04, King’s College London – p. 44/56

Encryption to the Rescue?

A → B : {A,NA}KAB encrypted

B → A : {NA,K′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities

SEN 04, King’s College London – p. 44/56

Protocol Attacks

replay attacks
reflection attacks
man-in-the-middle attacks
timing attacks
parallel session attacks
binding attacks (public key protocols)
changing environment / changing assumptions

(social engineering attacks)

SEN 04, King’s College London – p. 45/56

Public-Key Infrastructure

the idea is to have a certificate authority (CA)
you go to the CA to identify yourself
CA: “I, the CA, have verified that public key PpubBob
belongs to Bob”

CA must be trusted by everybody
What happens if CA issues a false certificate?
Who pays in case of loss? (VeriSign explicitly
limits liability to $100.)

SEN 04, King’s College London – p. 46/56

Man-in-the-Middle

“Normal” protocol run:

A sends public key to B
B sends public key to A
A sends message encrypted with B’s public key, B
decrypts it with its private key
B sends message encrypted with A’s public key, A
decrypts it with its private key

SEN 04, King’s College London – p. 47/56

Man-in-the-Middle

Attack:
A sends public key to B — C intercepts this
message and send his own public key
B sends public key to A — C intercepts this
message and send his own public key
A sends message encrypted with C’s public key, C
decrypts it with its private key, re-encrypts with
B’s public key
similar for other direction

SEN 04, King’s College London – p. 48/56

Man-in-the-Middle
Potential Prevention?
A sends public key to B
B sends public key to A
A encrypts message with B’s public key, send’s
half of the message
B encrypts message with A’s public key, send’s
half of the message
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message

Under which circumstances does this protocol
prevent MiM-attacks, or does it?

SEN 04, King’s College London – p. 49/56

Man-in-the-Middle
Potential Prevention?
A sends public key to B
B sends public key to A
A encrypts message with B’s public key, send’s
half of the message
B encrypts message with A’s public key, send’s
half of the message
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message

Under which circumstances does this protocol
prevent MiM-attacks, or does it? SEN 04, King’s College London – p. 49/56

Car Transponder (HiTag2)
1 C generates a random number N
2 C calculates (F,G) = {N}K
3 C → T: N,F
4 T calculates (F′,G′) = {N}K
5 T checks that F = F′
6 T → C: N,G′

7 C checks that G = G′

This process means that the transponder believes the car
knows the key K, and the car believes the transponder
knows the key K. They have authenticated themselves to
each other, or have they?

SEN 04, King’s College London – p. 50/56

Car Transponder (HiTag2)
1 C generates a random number N
2 C calculates (F,G) = {N}K
3 C → T: N,F
4 T calculates (F′,G′) = {N}K
5 T checks that F = F′
6 T → C: N,G′

7 C checks that G = G′

This process means that the transponder believes the car
knows the key K, and the car believes the transponder
knows the key K. They have authenticated themselves to
each other, or have they?

SEN 04, King’s College London – p. 50/56

A Man-in-the-middle attack in real life:
the card only says yes to the terminal if the PIN
is correct
trick the card in thinking transaction is verified
by signature
trick the terminal in thinking the transaction was
verified by PIN

SEN 04, King’s College London – p. 51/56

Problems with EMV

it is a wrapper for many protocols
specification by consensus (resulted
unmanageable complexity)
its specification is 700 pages in English plus
2000+ pages for testing, additionally some
further parts are secret
other attacks have been found

SEN 04, King’s College London – p. 52/56

Protocols are Difficult

even the systems designed by experts regularly fail

try to make everything explicit (you need to
authenticate all data you might rely on)

the one who can fix a system should also be liable
for the losses

cryptography is often not the answer

SEN 04, King’s College London – p. 53/56

Best Practices

Principle 1: Every message should say what it
means: the interpretation of a message should not
depend on the context.

Principle 2: If the identity of a principal is
essential to the meaning of a message, it is prudent
to mention the principal’s name explicitly in the
message (though difficult).

SEN 04, King’s College London – p. 54/56

Best Practices

Principle 1: Every message should say what it
means: the interpretation of a message should not
depend on the context.

Principle 2: If the identity of a principal is
essential to the meaning of a message, it is prudent
to mention the principal’s name explicitly in the
message (though difficult).

SEN 04, King’s College London – p. 54/56

Principle 3: Be clear about why encryption is
being done. Encryption is not cheap, and not
asking precisely why it is being done can lead to
redundancy. Encryption is not synonymous with
security.

Possible Uses of Encryption
Preservation of confidentiality: {X}K only those
that have K may recover X.
Guarantee authenticity: The partner is indeed
some particular principal.
Guarantee confidentiality and authenticity: binds
two parts of a message — {X,Y}K is not the
same as {X}K and {Y}K.

SEN 04, King’s College London – p. 55/56

Best Practices

Principle 4: The protocol designer should know
which trust relations his protocol depends on, and
why the dependence is necessary. The reasons for
particular trust relations being acceptable should
be explicit though they will be founded on
judgment and policy rather than on logic.

Example Certification Authorities: CAs are
trusted to certify a key only after proper steps have
been taken to identify the principal that owns it.

SEN 04, King’s College London – p. 56/56

