
Access Control and
Privacy Policies (2)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

APP 02, King’s College London, 2 October 2012 – p. 1/19

Homework

. . . I have a question about the homework.

Is it required to submit the homework before
the next lecture?

Thank you!
Anonymous

APP 02, King’s College London, 2 October 2012 – p. 2/19

future lectures

today

APP 02, King’s College London, 2 October 2012 – p. 3/19

future lectures today

APP 02, King’s College London, 2 October 2012 – p. 3/19

SmartWater

APP 02, King’s College London, 2 October 2012 – p. 4/19

seems helpful for preventing
cable theft

wouldn’t be helpful to make
your property safe, because of
possible abuse

security is always a tradeoff

Plain-text Passwords at IEEE
On 25 September 2012, a report on a data breach at IEEE:

IEEE is a standards organisation (not-for-profit)

many standards in CS are by IEEE

100k plain-text passwords were recorded in logs

the logs were openly accessible on their FTP server

http://ieeelog.com

APP 02, King’s College London, 2 October 2012 – p. 5/19

http://ieeelog.com

Plain-text Passwords at IEEE
On 25 September 2012, a report on a data breach at IEEE:

IEEE is a standards organisation (not-for-profit)

many standards in CS are by IEEE

100k plain-text passwords were recorded in logs

the logs were openly accessible on their FTP server

http://ieeelog.com

APP 02, King’s College London, 2 October 2012 – p. 5/19

http://ieeelog.com

Virgin Mobile (USA)

http://arstechnica.com/security/2012/09/
virgin-mobile-password-crack-risk/

for online accounts passwords must be 6 digits
you must cycle through 1M combinations (online)

he limited the attack on his own account to 1
guess per second, and
wrote a script that cleared the cookie set after
each guess
has been fixed now

APP 02, King’s College London, 2 October 2012 – p. 6/19

http://arstechnica.com/security/2012/09/virgin-mobile-password-crack-risk/
http://arstechnica.com/security/2012/09/virgin-mobile-password-crack-risk/

Virgin Mobile (USA)

http://arstechnica.com/security/2012/09/
virgin-mobile-password-crack-risk/

for online accounts passwords must be 6 digits
you must cycle through 1M combinations (online)

he limited the attack on his own account to 1
guess per second, and
wrote a script that cleared the cookie set after
each guess

has been fixed now

APP 02, King’s College London, 2 October 2012 – p. 6/19

http://arstechnica.com/security/2012/09/virgin-mobile-password-crack-risk/
http://arstechnica.com/security/2012/09/virgin-mobile-password-crack-risk/

Virgin Mobile (USA)

http://arstechnica.com/security/2012/09/
virgin-mobile-password-crack-risk/

for online accounts passwords must be 6 digits
you must cycle through 1M combinations (online)

he limited the attack on his own account to 1
guess per second, and
wrote a script that cleared the cookie set after
each guess
has been fixed now

APP 02, King’s College London, 2 October 2012 – p. 6/19

http://arstechnica.com/security/2012/09/virgin-mobile-password-crack-risk/
http://arstechnica.com/security/2012/09/virgin-mobile-password-crack-risk/

Smash the Stack for Fun . . .
“smashing the stack attacks” or “buffer overflow
attacks”
one of the most popular attacks;
attack of the (last) decade
(> 50% of security incidents reported at CERT
are related to buffer overflows)

http://www.kb.cert.org/vuls

made popular in an article by Elias Levy
(also known as Aleph One):

“Smashing The Stack For Fun and Profit”

http://www.phrack.org, Issue 49, Article 14
APP 02, King’s College London, 2 October 2012 – p. 7/19

http://www.kb.cert.org/vuls
http://www.phrack.org

The Problem
The basic problem is that library routines in C
look as follows:

1 void strcpy(char *src, char *dst) {
2 int i = 0;
3 while (src[i] != "\0") {
4 dst[i] = src[i];
5 i = i + 1;
6 }
7 }

the resulting problems are often remotely
exploitable
can be used to circumvents all access control
(botnets for further attacks)

APP 02, King’s College London, 2 October 2012 – p. 8/19

Variants

There are many variants:

return-to-lib-C attacks
heap-smashing attacks
(Slammer Worm in 2003 infected 90% of vulnerable
systems within 10 minutes)

“zero-days-attacks” (new unknown vulnerability)

APP 02, King’s College London, 2 October 2012 – p. 9/19

my_float is printed twice:

1 void foo (char *bar)
2 {
3 float my_float = 10.5; // in hex: \x41\x28\x00\x00
4 char buffer[28];
5

6 printf("my float value = %f\n", my_float);
7 strcpy(buffer, bar);
8 printf("my float value = %f\n", my_float);
9 }

10

11 int main (int argc, char **argv)
12 {
13 foo("my string is too long !!!!! ");
14 return 0;
15 }

APP 02, King’s College London, 2 October 2012 – p. 10/19

APP 02, King’s College London, 2 October 2012 – p. 11/19

APP 02, King’s College London, 2 October 2012 – p. 11/19

APP 02, King’s College London, 2 October 2012 – p. 11/19

1 int match(char *s1, char *s2) {
2 while(*s1 != ’\0’ && *s2 != ’\0’ && *s1 == *s2){
3 s1++; s2++;
4 }
5 return(*s1 - *s2);
6 }
7

8 void welcome() { printf("Welcome to the Machine!\n"); exit(0); }
9 void goodbye() { printf("Invalid identity, exiting!\n"); exit(1); }

10

11 main(){
12 char name[8];
13 char pw[8];
14

15 printf("login: ");
16 get_line(name);
17 printf("password: ");
18 get_line(pw);
19

20 if(match(name, pw) == 0)
21 welcome();
22 else
23 goodbye();
24 }

APP 02, King’s College London, 2 October 2012 – p. 12/19

A programmer might be careful, but still introduce
vulnerabilities:

1 // Since gets() is insecure and produces lots of warnings,
2 // I use my own input function instead.
3 char ch;
4 int i;
5

6 void get_line(char *dst) {
7 char buffer[8];
8 i = 0;
9 while ((ch = getchar()) != ’\n’) {

10 buffer[i++] = ch;
11 }
12 buffer[i] = ’\0’;
13 strcpy(dst, buffer);
14 }

APP 02, King’s College London, 2 October 2012 – p. 13/19

Payloads

the idea is you store some code as part to the
buffer
you then override the return address to execute
this payload

normally you start a root-shell

difficulty is to guess the right place where to
“jump”

APP 02, King’s College London, 2 October 2012 – p. 14/19

Payloads

the idea is you store some code as part to the
buffer
you then override the return address to execute
this payload

normally you start a root-shell
difficulty is to guess the right place where to
“jump”

APP 02, King’s College London, 2 October 2012 – p. 14/19

Payloads (2)

another difficulty is that the code is not allowed
to contain \x00:

xorl %eax, %eax

1 void strcpy(char *src, char *dst) {
2 int i = 0;
3 while (src[i] != "\0") {
4 dst[i] = src[i];
5 i = i + 1;
6 }
7 }

APP 02, King’s College London, 2 October 2012 – p. 15/19

Format String Vulnerability

string is nowhere used:

1 #include<stdio.h>
2 #include<string.h>
3

4 main(int argc, char **argv)
5 {
6 char *string = "This is a secret string\n";
7

8 printf(argv[1]);
9 }

this vulnerability can be used to read out the stack

APP 02, King’s College London, 2 October 2012 – p. 16/19

Protections against BO Attacks

use safe library functions
ensure stack data is not executable (can be
defeated)
address space randomisation (makes
one-size-fits-all more difficult)
choice of programming language (one of the
selling points of Java)

APP 02, King’s College London, 2 October 2012 – p. 17/19

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

Recover from attacks (traceability and auditing
of security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (eeded for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 02, King’s College London, 2 October 2012 – p. 18/19

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing
of security-relevant actions)

Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (eeded for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 02, King’s College London, 2 October 2012 – p. 18/19

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing
of security-relevant actions)
Monitoring (detect attacks)

Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (eeded for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 02, King’s College London, 2 October 2012 – p. 18/19

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing
of security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)

Authenticity (eeded for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 02, King’s College London, 2 October 2012 – p. 18/19

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing
of security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (eeded for access control)

Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 02, King’s College London, 2 October 2012 – p. 18/19

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing
of security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (eeded for access control)
Integrity (prevent unwanted modification or
tampering)

Availability and reliability (reduce the risk of DoS
attacks)

APP 02, King’s College London, 2 October 2012 – p. 18/19

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing
of security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (eeded for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 02, King’s College London, 2 October 2012 – p. 18/19

Homework

Assume format string attacks allow you to read
out the stack. What can you do with this
information?

Assume you can crash a program remotely. Why is
this a problem?

APP 02, King’s College London, 2 October 2012 – p. 19/19

