
Access Control and
Privacy Policies (3)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

APP 03, King’s College London, 8 October 2013 – p. 1/15

first lecture

today

APP 03, King’s College London, 8 October 2013 – p. 2/15

first lecture today

APP 03, King’s College London, 8 October 2013 – p. 2/15

Smash the Stack for Fun …
“smashing the stack attacks” or
“buffer overflow attacks”
one of the most popular attacks
(> 50% of security incidents reported at CERT
are related to buffer overflows)

http://www.kb.cert.org/vuls

made popular in an article by Elias Levy
(also known as Aleph One):

“Smashing The Stack For Fun and Profit”

Issue 49, Article 14
APP 03, King’s College London, 8 October 2013 – p. 3/15

http://www.kb.cert.org/vuls

The Problem
The basic problem is that library routines in C
look as follows:

1 void strcpy(char *src, char *dst) {
2 int i = 0;
3 while (src[i] != ”\0”) {
4 dst[i] = src[i];
5 i = i + 1;
6 }
7 }

the resulting problems are often remotely
exploitable
can be used to circumvents all access control
(botnets for further attacks)

APP 03, King’s College London, 8 October 2013 – p. 4/15

Variants

There are many variants:
return-to-lib-C attacks
heap-smashing attacks
(Slammer Worm in 2003 infected 90% of vulnerable
systems within 10 minutes)

“zero-days-attacks” (new unknown vulnerability)

APP 03, King’s College London, 8 October 2013 – p. 5/15

my_float is printed twice:

1 void foo (char *bar)
2 {
3 float my_float = 10.5; // in hex: \x41\x28\x00\x00
4 char buffer[28];
5
6 printf(”my float value = %f\n”, my_float);
7 strcpy(buffer, bar);
8 printf(”my float value = %f\n”, my_float);
9 }

10
11 int main (int argc, char **argv)
12 {
13 foo(”my string is too long !!!!! ”);
14 return 0;
15 }

APP 03, King’s College London, 8 October 2013 – p. 6/15

APP 03, King’s College London, 8 October 2013 – p. 7/15

APP 03, King’s College London, 8 October 2013 – p. 7/15

APP 03, King’s College London, 8 October 2013 – p. 7/15

1 int match(char *s1, char *s2) {
2 while(*s1 != ’\0’ && *s2 != ’\0’ && *s1 == *s2){
3 s1++; s2++;
4 }
5 return(*s1 - *s2);
6 }
7
8 void welcome() { printf(”Welcome to the Machine!\n”); exit(0); }
9 void goodbye() { printf(”Invalid identity, exiting!\n”); exit(1); }

10
11 main(){
12 char name[8];
13 char pw[8];
14
15 printf(”login: ”);
16 get_line(name);
17 printf(”password: ”);
18 get_line(pw);
19
20 if(match(name, pw) == 0)
21 welcome();
22 else
23 goodbye();
24 }

APP 03, King’s College London, 8 October 2013 – p. 8/15

A programmer might be careful, but still introduce
vulnerabilities:

1 // Since gets() is insecure and produces lots of warnings,
2 // I use my own input function instead.
3 char ch;
4 int i;
5
6 void get_line(char *dst) {
7 char buffer[8];
8 i = 0;
9 while ((ch = getchar()) != ’\n’) {

10 buffer[i++] = ch;
11 }
12 buffer[i] = ’\0’;
13 strcpy(dst, buffer);
14 }

APP 03, King’s College London, 8 October 2013 – p. 9/15

Payloads

the idea is you store some code as part to the
buffer
you then override the return address to execute
this payload

normally you start a root-shell

difficulty is to guess the right place where to
“jump”

APP 03, King’s College London, 8 October 2013 – p. 10/15

Payloads

the idea is you store some code as part to the
buffer
you then override the return address to execute
this payload

normally you start a root-shell
difficulty is to guess the right place where to
“jump”

APP 03, King’s College London, 8 October 2013 – p. 10/15

Payloads (2)

another difficulty is that the code is not allowed
to contain \x00:

xorl %eax, %eax

1 void strcpy(char *src, char *dst) {
2 int i = 0;
3 while (src[i] != ”\0”) {
4 dst[i] = src[i];
5 i = i + 1;
6 }
7 }

APP 03, King’s College London, 8 October 2013 – p. 11/15

Format String Vulnerability
string is nowhere used:

1 #include<stdio.h>
2 #include<string.h>
3
4 // a program that just prints the argument
5 // on the command line
6 //
7 // try and run it with %s
8
9

10 main(int argc, char **argv)
11 {
12 char *string = ”This is a secret string\n”;
13
14 printf(argv[1]);
15 }

this vulnerability can be used to read out the stack
APP 03, King’s College London, 8 October 2013 – p. 12/15

Protections against BO Attacks

use safe library functions
ensure stack data is not executable (can be
defeated)
address space randomisation (makes
one-size-fits-all more difficult)
choice of programming language (one of the
selling points of Java)

APP 03, King’s College London, 8 October 2013 – p. 13/15

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 14/15

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)

Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 14/15

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)

Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 14/15

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)

Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 14/15

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)

Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 14/15

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)

Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 14/15

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 14/15

Homework

Assume format string attacks allow you to read
out the stack. What can you do with this
information?

Assume you can crash a program remotely. Why
is this a problem?

APP 03, King’s College London, 8 October 2013 – p. 15/15

