Access Control and
Privacy Policies (3)

Email: christian.urban at kcl.ac.uk
Office: Sr.27 (st floor Strand Building)
Slides: KEATS (also home work is there)

first lecture

Smash the Stack for Fun...

e “smashing the stack attacks” or
“buffer overflow attacks”

e one of the most popular attacks
(> 50% of security incidents reported at CERT
are related to buffer overflows)
http://www.kb.cert.org/vuls

e made popular in an article by Elias Levy
(also known as Aleph One):

“Smashing The Stack For Fun and Profit”

Issue 49, Article 14

http://www.kb.cert.org/vuls

The Problem

e The basic problem is that library routines in C
look as follows:

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] != ”\0”) {
dst[i] = src[i];
i=1i4+1;
}
}

P N T NV N

o the resulting problems are often remotely
exploitable

@ can be used to circumvents all access control
(botnets for further attacks)

Variants

There are many variants:

e return-to-lib-C attacks
e heap-smashing attacks

(Slammer Worm in 2003 infected 90% of vulnerable

systems within 10 minutes)

e “zero-days-attacks” (new unknown vulnerability)

my float is printed twice:

void foo (char *bar)

{
float my_float = 10.5; // in hex: \x41\x28\x00\x00

char buffer[28];

printf(”my float value = %f\n”, my_float);

strcpy(buffer, bar);

printf(”my float value = %f\n”, my_float);
}

int main (int argc, char **argv)

{
foo(”my string is too long !!!Il »);
return 0;

}

APP 03, King’s College London, 8 October 2013 — p. 7/15

APP 03, King’s College London, 8 October 2013 — p. 7/15

APP 03, King’s College London, 8 October 2013 — p

21
22
23
24

int match(char *sl1, char *s2) {
while(*s1 != ’\0° && *s2 != ’\0’° && *s1 == *s2){
S1++; S2++;
}

return(*sl1l - *s2);

}

void welcome() { printf(”Welcome to the Machine!\n”); exit(®0); }
void goodbye() { printf(”Invalid identity, exiting!\n”); exit(1);

main(){
char name[8];
char pw[8];

printf(”login: ”);
get_line(name);
printf(”password: ”);
get_line(pw);

if(match(name, pw) == 0)
welcome();

else
goodbye();

}

A programmer might be careful, but still introduce
vulnerabilities:

// Since gets() is insecure and produces lots of warnings,
// I use my own input function instead.

char ch;

int i;

void get_line(char *dst) {

char buffer[8];

i=0;

while ((ch = getchar()) != ’\n’) {
buffer[i++] = ch;

}

buffer[i] = ’\0’;

strcpy(dst, buffer);

Payloads

o the idea is you store some code as part to the

buffer

e you then override the return address to execute
this payload

e normally you start a root-shell

Payloads

o the idea is you store some code as part to the

buffer

e you then override the return address to execute
this payload

e normally you start a root-shell

R - T

Payloads (2)

e another difficulty is that the code is not allowed
to contain \x00:

xorl %eax, %eax

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] != »”\0”) {
dst[i] = src[i];
i=14+1;
}
}

© N v AW N =

Format String Vulnerability

string is nowhere used:

#include<stdio.h>
#include<string.h>

// a program that just prints the argument
// on the command line

//

// try and run it with %s

main(int argc, char **argv)
{

char *string = ”This is a secret string\n”;

printf(argv([1]);

this vulnerability can be used to read out the stack

Protections against BO Atta

e use safe library functions

ensure stack data is not executable (can be

defeated)

address space randomisation (makes
one-size-fits-all more difficult)

choice of programming language (one of the
selling points of Java)

Security Goals

e Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

Security Goals

e Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

e Recover from attacks (traceability and auditing of
security-relevant actions)

Security Goals

e Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

e Recover from attacks (traceability and auditing of
security-relevant actions)

e Monitoring (detect attacks)

Security Goals

e Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

e Recover from attacks (traceability and auditing of
security-relevant actions)

e Monitoring (detect attacks)

e Privacy, confidentiality, anonymity (to protect
secrets)

Security Goals

e Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

e Recover from attacks (traceability and auditing of
security-relevant actions)

e Monitoring (detect attacks)

e Privacy, confidentiality, anonymity (to protect
secrets)

o Authenticity (needed for access control)

Security Goals

e Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

e Recover from attacks (traceability and auditing of
security-relevant actions)

e Monitoring (detect attacks)

e Privacy, confidentiality, anonymity (to protect
secrets)

o Authenticity (needed for access control)

o Integrity (prevent unwanted modification or
tampering)

Security Goals

e Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

e Recover from attacks (traceability and auditing of
security-relevant actions)

e Monitoring (detect attacks)

e Privacy, confidentiality, anonymity (to protect
secrets)

o Authenticity (needed for access control)

o Integrity (prevent unwanted modification or
tampering)

e Availability and reliability (reduce the risk of DoS
attacks)

Homework

e Assume format string attacks allow you to read
out the stack. What can you do with this
information?

e Assume you can crash a program remotely. Why
is this a problem?

