
Handout 9 (Static Analysis)
If we want to improve the safety and security of our programs, we need a more
principled approach to programming. Testing is good, but as Dijkstra famously
wrote:

“Program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.”

While such amore principled approach has been the subject of intense study for
a long, long time, only in the past few years some impressive results have been
achieved. One is the complete formalisation and (mathematical) verification of
a microkernel operating system called seL4.

http://sel4.systems

In 2011 this work was included in the MIT Technology Review in the annual
list of the world’s ten most important emerging technologies.1 While this work
is impressive, its technical details are too enormous for an explanation here.
Therefore let us look at somethingmuch simpler, namely finding out properties
about programs using static analysis.

Static analysis is a technique that checks properties of a programwithout ac-
tually running the program. This should raise alarm bells with you—because
almost all interesting properties about programs are equivalent to the halting
problem, which we know is undecidable. For example estimating the memory
consumption of programs is in general undecidable, just like the halting prob-
lem. Static analysis circumvents this undecidability-problem by essentially al-
lowing answers yes and no, but also don’t know. With this “trick” even the halt-
ing problem becomes decidable…for example we could always say don’t know.
Of course this would be silly. The point is that we should be striving for a
method that answers as often as possible either yes or no—just in cases when it
is too difficult we fall back on the don’t-know-answer. This might sound all like
abstract nonsense. Therefore let us look at a concrete example.

A Simple, Idealised Programming Language

Our starting point is a small, idealised programming language. It is idealised
becausewe cut several corners in comparisonwith real programming languages.
The language we will study contains, amongst other things, variables holding
integers. Using static analysis, we want to find out what the sign of these inte-
gers (positive or negative) will be when the program runs. This sign-analysis
seems like a very simple problem. But even such simple problems, if approached
naively, are in general undecidable, just like Turing’s halting problem. I let you
think why?

1http://www2.technologyreview.com/tr10/?year=2011

1

http://sel4.systems
http://www2.technologyreview.com/tr10/?year=2011


Is sign-analysis of variables an interesting problem? Well, yes—if a com-
piler can find out that for example a variable will never be negative and this
variable is used as an index for an array, then the compiler does not need to
generate code for an underflow-test. Remember some languages are immune
to buffer-overflowaĴacks, but they need to addunderflowand overflow checks
everywhere. If the compiler can omit the underflow test, for example, then this
can potentially drastically speed up the generated code. According to the John
Regehr, an expert in the field of compilers, overflow checks can cause 5-10%
slowdown, and in some languages even 100% for tight loops.2

What do programs in our simple programming language look like? The
following grammar gives a first specification:

⟨Stmt⟩ ::= ⟨label⟩ :
| ⟨var⟩ := ⟨Exp⟩
| jmp? ⟨Exp⟩ ⟨label⟩
| goto ⟨label⟩

⟨Prog⟩ ::= ⟨Stmt⟩… ⟨Stmt⟩

⟨Exp⟩ ::= ⟨Exp⟩ + ⟨Exp⟩
| ⟨Exp⟩ * ⟨Exp⟩
| ⟨Exp⟩ = ⟨Exp⟩
| ⟨num⟩
| ⟨var⟩

I assume you are familiar with such grammars.3 There are three main syntactic
categories: statments and expressions as well as programs, which are sequences
of statements. Statements are either labels, variable assignments, conditional
jumps (jmp?) and unconditional jumps (goto). Labels are just strings, which
can be used as the target of a jump. We assume that in every program the la-
bels are unique—if there is a clash, then we do not knowwhere to jump to. The
conditional jumps and variable assignments involve (arithmetic) expressions.
Expressions are either numbers, variables or compound expressions built up
from +, * and = (for simplicity reasons we do not consider any other opera-
tions). We assume we have negative and positive numbers, …-2, -1, 0, 1, 2…
An example program that calculates the factorial of 5 is in oure programming
language as follows:

1 a := 1
2 n := 5
3 top:
4 jmp? n = 0 done
5 a := a * n
6 n := n + -1
7 goto top
8 done:

As can be seen each line of the program contains a statement. In the first two
lineswe assign values to the variables a and n. In line 4we testwhether n is zero,
in which case we jump to the end of the program marked with the label done.

2http://blog.regehr.org/archives/1154
3http://en.wikipedia.org/wiki/Backus–Naur_Form

2

http://blog.regehr.org/archives/1154
http://en.wikipedia.org/wiki/Backus–Naur_Form


n := 6
m1 := 0
m2 := 1

loop:
jmp? n = 0 done
tmp := m2
m2 := m1 + m2
m1 := tmp
n := n + -1
goto top

done:

Figure 1: A mystery program in our idealised programming language. Try to
find out what it calculates!

If n is not zero, we multiply the content of a by n, decrease n by one and jump
back to the beginning of the loop, marked with the label top. Another program
in our language is shown in Figure 1. I let you think what it calculates.

Even if our language is rather small, it is still Turing complete—meaning
quite powerful. However, discussing this fact in more detail would lead us too
far astray. Clearly, our programming is rather low-level and not very comfort-
able for writing programs. It is inspired by real machine code, which is the
code that is executed by a CPU. So a more interesting question is what is miss-
ing in comparison with real machine code? Well, not much…in principle. Real
machine code, of course, contains many more arithmetic instructions (not just
addition and multiplication) and many more conditional jumps. We could add
these to our language if we wanted, but complexity is really beside the point
here. Furthermore, real machine code has many instructions for manipulating
memory. We do not have this at all. This is actually a more serious simpli-
fication because we assume numbers to be arbitrary small or large, which is
not the case with real machine code. In real code basic number formats have a
range and might over-flow or under-flow from this range. Also the number of
variables in our programs is potentially unlimited, while memory in an actual
computer, of course, is always limited somehow on any actual. To sum up,
our language might look ridiculously simple, but it is not far removed from
practically relevant issues.

An Interpreter

Designing a language is like playing god: you can saywhat names for variables
you allow; what programs should look like; most importantly you can decide
what each part of the program should mean and do. While our language is
rather simple and the meaning of statements, for example, is rather straightfor-
ward, there are still places where we need to make real choices. For example

3



consider the conditional jumps, say the one in the factorial program:

jmp? n = 0 done

How should they work? We could introduce Booleans (true and false) and
then jump only when the condition is true. However, since we have numbers
in our language anyway, why not just encoding true as one, and false as zero?
In this way we can dispense with the additional concept of Booleans.

I hope the above discussion makes it already clear we need to be a bit more
careful with our programs. Below we shall describe an interpreter for our pro-
gramming language, which specifies exactly how programs are supposed to be
run…at least we will specify this for all good programs. By good programs I
mean where all variables are initialised, for example. Our interpreter will just
crash if it cannot find out the value for a variable, in case it is not initialised.
Also, we will assume that labels in good programs are unique, otherwise our
programs will calculate “garbage”.

First we will pre-process our programs. This will simplify the definition
of our interpreter later on. We will transform programs into snippets. Their
purpose is to simplify the definition of what the interpreter should do in case
of a jump. A snippet is a label and all code that comes after the label. This
essentially means a snippet is a map from labels to code. Given that programs
are sequences (or lists) of statements, we can easily calculate the snippets by
just traversing this sequence and recursively generating the map. Suppose a
program is of the general form

stmt1 stmt2 . . . stmtn

The idea is to go through this sequence of statements one by one and check
whether they are a label. If yes, we add the label and the remaining statements
to our map. If no, we just continue with the next statement. To come up with a
recursive definition for generating snippets, let us write [] for the program that
does not contain any statement. Consider the following definition:

snippets([]) def
= ∅

snippets(stmt rest) def
=

{
snippets(rest)[label := rest] if stmt = label:
snippets(rest) otherwise

In the first clause we just return the empty map for the program that does not
contain any statement. In the second clause, we have to distinguish the case
where the first statement is a label or not. As said before, if not, then we just
“throw away” the label and recursively calculate the snippets for the rest of the
program. If yes, then we do the same, but also update the map so that label
now points to the rest of the statements. There is one small problem we need
to overcome: our two programs have no label as entry point—that is where the
execution starts. We usually assume that the first statement will be run first. To
make this the default, it is convenient if we add to all our programs a default
label, say "" (the empty string). With this we can define our pre-processing of
programs as follows

4



preproc(prog) def
= snippets("": prog)

Let us see how this pans out in practice. If we pre-process the factorial program
shown earlier, we obtain the following map:

"" 7→ a := 1
n := 5

top:
jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

top 7→ jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

done 7→ []

I highlighted the keys in this map. Since there are three labels in the factorial
program, there are three keys. When running the factorial program and en-
countering a jump, then we only have to consult this map, in order to find out
what the next instruction should be.

5


