
Handout 3 (Buffer Overflow AĴacks)
By far themost popular aĴackmethod on computers are buffer overflowaĴacks
or variations thereof. The first Internetworm (Morris) exploited exactly such an
aĴack. The popularity is unfortunate because we nowadays have technology
in place to prevent them effectively. But these kind of aĴacks are still very
relevant even today since there are many legacy systems out there and also
many modern embedded systems often do not take any precautions to prevent
such aĴacks. The plot below shows the percentage of buffer overflow aĴacks
listed in the US National Vulnerability Database.1

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

5

10

15

20

0,4 0,4 0,5 0,1 0,5
2,0

3,7
1,1 1,4 2,1

6,7

10,0 9,8
11,6

16,0
13,7 14,6

9,7
11,9

year

%
of

to
ta
la
Ĵa

ck
s

This statistics shows that in the last seven years or so the number of buffer over-
flow aĴacks is around 10% of all aĴacks (whereby the absolute numbers of at-
tacks grow each year). So you can see buffer overflow aĴacks are very relevant
today.

To understand how buffer overflow aĴacks work, we have to have a look
at how computers work “under the hood” (on the machine level) and also un-
derstand some aspects of the C/C++ programming language. This might not be
everyday fare for computer science students, but who said that criminal hack-
ers restrict themselves to everyday fare? ...not to mention the free-riding script-
kiddies who use this technology without even knowing what the underlying
ideas are. If you want to be a good security engineer who needs to defend
against such aĴacks, then beĴer you get to know the details too.

For buffer overflow aĴacks to work, a number of innocent design decisions,
which are really benign on their own, have to come together. All these de-
cisions were taken at a time when there was no Internet: C was introduced
around 1973; the Internet TCP/IP protocol was standardised in 1982 by which
time there weremaybe 500 servers connected (and all users werewell-behaved,
mostly academics); Intel’s first 8086 CPUs arrived around 1977. So nobody of
the “forefathers” can really be blamed, but as mentioned above we should al-
ready beway beyond the point that buffer overflowaĴacks areworth a thought.
Unfortunately, this is far from the truth. I let you ponder why?

© Christian Urban, 2014, 2015
1Search for “Buffer errors” at http://web.nvd.nist.gov/view/vuln/statistics.

1

http://web.nvd.nist.gov/view/vuln/statistics

One such “benign” design decision is how the memory is laid out into dif-
ferent regions for each process.

text

heap

stack

lower
address

higher
address

grows
older

newer

The text region contains the program code (usually this region is read-only).
The heap stores all data the programmer explicitly allocates. For us the most
interesting region is the stack, which contains data mostly associated with the
control flow of the program. Notice that the stack grows from higher addresses
to lower addresses (i.e. from the back to the front). That means that older items
on the stack are stored behind, or after, newer items. Let’s look a bit closer what
happens with the stack when a program is running. Consider the following
simple C program.

1 void foo(int a, int b, int c) {
2 char buffer1[6] = "abcde";
3 char buffer2[10] = "123456789";
4 }
5

6 void main() {
7 foo(1,2,3);
8 }

The main function calls in Line 7 the function foo with three arguments. Foo
creates two (local) buffers, but does not do anything interesting with them. The
only purpose of this program is to illustrate what happens behind the scenes
with the stack. The interesting question is what will the stack look like after
Line 3 has been executed? The answer can be illustrated as follows:

2

main mainmain

arg3=3

arg2=2

arg1=1

ret

last sp

buf1

buf2

back to main()

On the left is the stack before foo is called; on the right is the stack after foo
finishes. The function call to foo in Line 7 pushes the arguments onto the stack
in reverse order—shown in the middle. Therefore first 3 then 2 and finally
1. Then it pushes the return address onto the stack where execution should
resume once foo has finished. The last stack pointer (sp) is needed in order
to clean up the stack to the last level—in fact there is no cleaning involved,
but just the top of the stack will be set back to this address. So the last stack
pointer also needs to be stored. The two buffers inside foo are on the stack too,
because they are local datawithin foo. Consequently the stack in themiddle is a
snapshot after Line 3 has been executed. In case you are familiar with assembly
instructions you can also read off this behaviour from themachine code that the
gcc compiler generates for the program above:2

1 _main:
2 push %ebp
3 mov %esp,%ebp
4 sub %0xc,%esp
5 movl $0x3,0x8(%esp)
6 movl $0x2,0x4(%esp)
7 movl $0x1,(%esp)
8 call 0x8048394 <foo>
9 leave
10 ret

2You can make gcc generate assembly instructions if you call it with the -S option, for example
gcc -S out in.c . Or you can look at this code by using the debugger. How to do this will be
explained later.

3

1 _foo:
2 push %ebp
3 mov %esp,%ebp
4 sub $0x10,%esp
5 movl $0x64636261,-0x6(%ebp)
6 movw $0x65,-0x2(%ebp)
7 movl $0x34333231,-0x10(%ebp)
8 movl $0x38373635,-0xc(%ebp)
9 movw $0x39,-0x8(%ebp)
10 leave
11 ret

On the left you can see how the function main prepares in Lines 2 to 7 the stack
before calling the function foo. You can see that the numbers 3, 2, 1 are stored
on the stack (the register $esp refers to the top of the stack; $0x1, $0x2 $0x3
are the encodings for 1 to 3). On the right you can see how the function foo
stores the two local buffers onto the stack and initialises them with the given
data (Lines 2 to 9). Since there is no real computation going on inside foo, the
function then just restores the stack to its old state and crucially sets the return
address where the computation should resume (Line 9 in the code on the right-
hand side). The instruction ret then transfers control back to the function main
to the instruction just after the call to foo, that is Line 9.

Another part of the “conspiracy” of buffer overflow aĴacks is that library
functions in C look typically as follows:

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] != "\0") {

dst[i] = src[i];
i = i + 1;

}
}

This function copies data from a source src to a destination dst. The impor-
tant point is that it copies the data until it reaches a zero-byte ("\0"). This is a
convention of the C language which assumes all strings are terminated by such
a zero-byte.

The central idea of the buffer overflow aĴack is to overwrite the return ad-
dress on the stack. This address decides where the control flow of the program
should resume once the function at hand has finished its computation. So if we
can control this address, then we can modify the control flow of a program. To
launch an aĴack we need somewhere in a function a local a buffer, say

char buf[8];

4

which is filled by some user input. The corresponding stack of such a function
will look as follows

main

arg3=3

arg2=2

arg1=1

ret

last sp

buf $esp

??

jump to \x080483f4

We need to fill this buffer over its limit of 8 characters so that it overwrites the
stack pointer and then also overwrites the return address. If, for example, we
want to jump to a specific address in memory, say, \x080483f4 then we can fill
the buffer with the data

char buf[8] = "AAAAAAAABBBB\xf4\x83\x04\x08";

The first eight As fill the buffer to the rim; the next four Bs overwrite the stack
pointer (with what data we overwrite this part is usually not important); then
comes the address we want to jump to. Notice that we have to give the address
in the reverse order. All addresses on Intel CPUs need to be given in this way.
Since the string is enclosed in double quotes, the C convention is that the string
internally will automatically be terminated by a zero-byte. If the programmer
uses functions like strcpy for filling the buffer buf, then we can be sure it will
overwrite the stack in thismanner—since it will copy everything up to the zero-
byte. Notice that this overwriting of the buffer onlyworks since the newer item,
the buffer, is stored on the stack before the older items, like return address and
arguments. If it had be the other way around, then such an overwriting by
overflowing a local buffer would just not work. Had the designers of C had just
been able to foresee what headaches their way of arranging the stack caused in
the time where computers are accessible from everywhere?

What the outcome of such an aĴack is can be illustratedwith the code shown
in Figure 1. Under “normal operation” this program ask for a login-name and
a password. Both of which are stored in char buffers of length 8. The function
match tests whether two such buffers contain the same content. If yes, then the
function lets you “in” (by printing Welcome). If not, it denies access (by printing
Wrong identity). The vulnerable function is get_line in Lines 11 to 19. This
function does not take any precautions about the buffer of 8 characters being
filled beyond its 8-character-limit. Let us suppose the login name is test. Then
the buffer overflow can be triggeredwith a specially crafted string as password:

5

AAAAAAAABBBB\x2c\x85\x04\x08\n

The address at the end happens to be the one for the function welcome(). This
means even with this input (where the login name and password clearly do
not match) the program will still print out Welcome. The only information we
need for this aĴack to work is to know where the function welcome() starts
in memory. This information can be easily obtained by starting the program
inside the debugger and disassembling this function.

$ gdb C2
GNU gdb (GDB) 7.2-ubuntu
(gdb) disassemble welcome

C2 is the name of the program and gdb is the name of the debugger. The output
will be something like this

0x0804852c <+0>: push %ebp
0x0804852d <+1>: mov %esp,%ebp
0x0804852f <+3>: sub $0x4,%esp
0x08048532 <+6>: movl $0x8048690,(%esp)
0x08048539 <+13>: call 0x80483a4 <puts@plt>
0x0804853e <+18>: movl $0x0,(%esp)
0x08048545 <+25>: call 0x80483b4 <exit@plt>

indicating that the function welcome() starts at address 0x0804852c (top ad-
dress in the left column).

This kind of aĴackwas very popularwith commercial programs that needed
a key to be unlocked. Historically, hackers first broke the rather weak en-
cryption of these locking mechanisms. After the encryption had been made
stronger, hackers used buffer overflow aĴacks as shown above to jump directly
to the part of the program that was intended to be only available after the cor-
rect key was typed in.

Payloads
Unfortunately, muchmore harm can be caused by buffer overflow aĴacks. This
is achieved by injecting code that will be run once the return address is appro-
priately modified. Typically the code that will be injected starts a shell. This
gives the aĴacker the ability to run programs on the target machine and to have
a good look around, provided the aĴacked process was not already running as
root.3 In order to be send as part of the string that is overflowing the buffer, we
need the code to be represented as a sequence of characters. For example

char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89"
"\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c"

3In that case the aĴacker would already congratulate him or herself to another computer under
full control.

6

1 #include <string.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4

5 // Since gets() is insecure and produces lots
6 // of warnings, thereofre I use my own input
7 // function instead.
8 int i;
9 char ch;
10

11 void get_line(char *dst) {
12 char buffer[8];
13 i = 0;
14 while ((ch = getchar()) != '\n') {
15 buffer[i++] = ch;
16 }
17 buffer[i] = '\0';
18 strcpy(dst, buffer);
19 }
20

21 int match(char *s1, char *s2) {
22 while(*s1 != '\0' && *s2 != '\0' && *s1 == *s2){
23 s1++; s2++;
24 }
25 return(*s1 - *s2);
26 }
27

28 void welcome() { printf("Welcome!\n"); exit(0); }
29 void goodbye() { printf("Wrong identity, exiting!\n"); exit(1); }
30

31 int main(){
32 char name[8];
33 char pw[8];
34

35 printf("login: ");
36 get_line(name);
37 printf("password: ");
38 get_line(pw);
39

40 if(match(name, pw) == 0)
41 welcome();
42 else
43 goodbye();
44 }

Figure 1: A vulnerable login implementation.

7

"\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff"
"\xff\xff/bin/sh";

These characters represent the machine code for opening a shell. It seems ob-
taining such a string requires “higher-education” in the architecture of the tar-
get system. But it is actually relatively simple: First there are many such string
ready-made—just a quick Google query away. Second, tools like the debugger
can help us again. We can just write the code we want in C, for example this
would be the program for starting a shell:

#include <stdio.h>

int main()
{ char *name[2];

name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);

}

Once compiled, we can use the debugger to obtain the machine code, or even
the ready-made encoding as character sequence.

While easy, obtaining this string is not entirely trivial using gdb. Remem-
ber the functions in C that copy or fill buffers work such that they copy every-
thing until the zero byte is reached. Unfortunately the “vanilla” output from
the debugger for the shell-program above will contain such zero bytes. So a
post-processing phase is needed to rewrite the machine code in a way that it
does not contain any zero bytes. This is like some works of literature that have
been wriĴen so that the leĴer e, for example, is avoided. The technical term for
such a literature work is lipogram.4 For rewriting the machine code, you might
need to use clever tricks like

xor %eax, %eax

This instruction does not contain any zero-byte when encoded as string, but
produces a zero-byte on the stack when run.

Having removed the zero-bytes we can craft the string that will be send to
the target computer. This of course requires that the buffer we are trying to
aĴack can at least contain the shellcode we want to run. But as you can see this
is only 47 bytes, which is a very low bar to jump over. More formidable is the
choice of finding the right address to jump to. The string is typically of the form

4The most famous example of a lipogram is a 50,000 words novel titled Gadsby, see https:
//archive.org/details/Gadsby, which avoids the leĴer ‘e’ throughout.

8

https://archive.org/details/Gadsby
https://archive.org/details/Gadsby

shell code“

”

where we need to be very precise with the address with which we will over-
write the buffer. It has to be precisely the first byte of the shellcode. While this
is easy with the help of a debugger (as seen before), we typically cannot run
anything, including a debugger, on the machine yet we target. And the ad-
dress is very specific to the setup of the target machine. One way of finding out
what the right address is is to try out one by one every possible address until
we get lucky. With the large memories available today, however, the odds are
long. And if we try out too many possible candidates too quickly, we might be
detected by the system administrator of the target system.

We can improve our odds considerably by following a clever trick. Instead
of adding the shellcode at the beginning of the string, we should add it at the
end, just before we overflow the buffer, for example

shell code

“

”

Then we can fill up the grey part of the string with NOP operations. The code
for this operation is \0x90. It is available on every architecture and its purpose
in a CPU is to do nothing apart from waiting a small amount of time. If we
now use an address that lets us jump to any address in the grey area we are
done. The target machine will execute these NOP operations until it reaches the
shellcode. That is why this NOP-part is often called NOP-sledge. A moment of
thought should convince you that this trick can hugely improve our odds of
finding the right address—depending on the size of the buffer, it might only
take a few tries to get the shellcode to run. And then we are in. The code for
such an aĴack is shown in Figure 2. It is directly taken from the original paper
about “Smashing the Stack for Fun and Profit” (see pointer given at the end).

By the way you might have the question how do aĴackers find out about
vulnerable systems? Well, the automated version uses fuzzers, which throw
randomly generated user input at applications and observe the behaviour. If
an application seg-faults (throws a segmentation error) then this is a good in-
dication that a buffer overflow vulnerability can be exploited.

9

Format String AĴacks

Another question might arise, where do we get all this information about ad-
dresses necessary for mounting a buffer overflow aĴack without having yet
access to the system? The answer are format string aĴacks. While technically
they are programming mistakes (and they are pointed out as warning by mod-
ern compilers), they can be easily made and therefore an easy target. Let us
look at the simplest version of a vulnerable program.

1 #include<stdio.h>
2 #include<string.h>
3

4 // a program that "just" prints the argument
5 // on the command line
6

7 int main(int argc, char **argv)
8 {
9 char *string = "This is a secret string\n";
10 printf(argv[1]);
11 }

The intention is to print out the first argument given on the command line. The
“secret string” is never to be printed. The problem is that the C function printf
normally expects a format string—a schema that directs how a string should be
printed. This would be for example a proper invocation of this function:

long n = 123456789;
printf("This is a long %lu!", n);

In the program above, instead, the format string has been forgoĴen and only
argv[1] is printed. Now if we give on the command line a string such as

"foo %s"

then printf expects a string to follow. But there is no string that follows, and
how the argument resolution works in C will in fact print out the secret string!
This can be handily exploited by using the format string "%x", which reads out
the stack. So "%x....%x" will give you as much information from the stack as
you need and over the Internet.

While the program above contains clearly a programming mistake (forgot-
ten format string), things are not as simple when the application reads data
from the user and prompts responses containing the user input. Consider the
slight variant of the program above

1 #include<stdio.h>
2 #include<string.h>
3

4 int main(int argc, char **argv)
5 { char buf[10];

10

6 snprintf(buf, sizeof buf, argv[1]);
7 printf ("Input: %s \n", buf);
8 }

Here the programmer actually tried to take extra care to not fall pray to a buffer
overflow aĴack, but in the process made the program susceptible to a format
string aĴack. Clearly the printf function in Line 7 contains now an explicit
format string, but because the commandline input is copied using the function
snprintf the result will be the same—the string can be exploited by embed-
ding format strings into the user input. Here the programmer really cannot be
blamed (much) because by using snprintf he or she tried to make sure only
10 characters get copied into the local buffer—in this way avoiding the obvious
buffer overflow aĴack.

Caveats and Defences

How can we defend against these aĴacks? Well, a reflex could be to blame
programmers. Precautions should be taken by them so that buffers cannot
been overfilled and format strings should not be forgoĴen. This might actu-
ally be slightly simpler nowadays since safe versions of the library functions
exist, which always specify the precise number of bytes that should be copied.
Compilers also nowadays provide warnings when format strings are omiĴed.
So proper education of programmers is definitely a part of a defence against
such aĴacks. However, if we leave it at that, then we have the mess we have
today with new aĴacks discovered almost daily.

There is actually a quite long record of publications proposing defences
against buffer overflow aĴacks. One method is to declare the stack data as
not executable. In this way it is impossible to inject a payload as shown above
which is then executed once the stack is smashed. But this needs hardware sup-
port which allows one to declare certain memory regions to be not executable.
Such a feature was not introduced before the Intel 386, for example. Also if you
have a JIT (just-in-time) compiler it might be advantageous to have the stack
containing executable data. So it is definitely a trade-off.

Anyway aĴackers have found ways around this defence: they developed
return-to-lib-C aĴacks. The idea is to not inject code, but already use the code
that is present at the target computer. The lib-C library, for example, already
contains the code for spawning a shell. With return-to-lib-C one just has to find
out where this code is located. But aĴackers can make good guesses. In my
examples I took a shortcut and always made the stack executable.

Another defence is called stack canaries. The advantage is that they can be
automatically inserted into compiled code and do not need any hardware sup-
port. Though they will make your program run slightly slower. The idea be-
hind stack canaries is to push a random number onto the stack just before local
data is stored. For our very first function the stack would with a stack canary
look as follows

11

main

arg3=3

arg2=2

arg1=1

ret

last sp

random

buf

The idea behind this random number is that when the function finishes, it is
checked that this random number is still intact on the stack. If not, then a buffer
overflow has occurred. Although this is quite effective, but requires suitable
support for generating random numbers. This is always hard to get right and
aĴackers are happy to exploit the resulting weaknesses.

Another defence is address space randomisation. This defence tries to make it
harder for an aĴacker to guess addresses where code is stored. It turns out that
addresses where code is stored is rather predictable. Randomising the place
where programs are stored mitigates this problem somewhat.

As mentioned before, modern operating systems have these defences en-
abled by default and make buffer overflow aĴacks harder, but not impossible.
Indeed, I as an amateur aĴacker had to explicitly switch off these defences. I
run my example under an Ubuntu version “Maverick Meerkat” from October
2010 and the gcc 4.4.5. I have not tried whether newer versions would work
as well. I tested all examples inside a virtual box5 insulating my main system
from any harm. When compiling the programs I called the compiler with the
following options:

/usr/bin/gcc -ggdb -O0
-fno-stack-protector
-mpreferred-stack-boundary=2
-z execstack

The first two are innocent as they instruct the compiler to include debugging
information and also produce non-optimised code (the laĴer makes the output
of the code a bit more predictable). The third is important as it switches off de-
fences like the stack canaries. The fourth again makes it a bit easier to read the
code. The final option makes the stack executable, thus the example in Figure 2
works as intended. While this might be considered cheating....since I explicitly
switched off all defences, I hope I was able convey the point that this is actu-
ally not too far from realistic scenarios. I have shown you the classic version of

5https://www.virtualbox.org

12

https://www.virtualbox.org

the buffer overflow aĴacks. Updated variants do exist. Also one might argue
buffer-overflow aĴacks have been solved on computers (desktops or servers)
but the computing landscape of today is muchwider than that. Themain prob-
lem today are embedded systems against which aĴacker can equally cause a lot
of harm andwhich aremuch less defended. Anthony Bonkoskimakes a similar
argument in his security blog:

http://jabsoft.io/2013/09/25/
are-buffer-overflows-solved-yet-a-historical-tale/

There is one more rather effective defence against buffer overflow aĴacks:
Why not using a safe language? Java at its inception was touted as a safe lan-
guage because it hides all explicit memory management from the user. This
definitely incurs a runtime penalty, but for bog-standard user-input process-
ing applications, speed is not of such an essence anymore. There are of course
also many other programming languages that are safe, i.e. immune to buffer
overflow aĴacks.

Further Reading

If you want to know more about buffer overflow aĴacks, the original Phrack
article “Smashing The Stack For Fun And Profit” by Elias Levy (also known as
Aleph One) is an engaging read:

http://phrack.org/issues/49/14.html

This is an article from 1996 and some parts are not up-to-date anymore. The
article called “Smashing the Stack in 2010”

http://www.mgraziano.info/docs/stsi2010.pdf

updates, as the name says, most information to 2010. There is another Phrack
article about return-into-lib(c) exploits from 2012:

http://phrack.org/issues/58/4.html

The main topic is about geĴing around the non-executability of stack data (in
case it is protected). This article gives some further pointers into the recent
literature about buffer overflow aĴacks.

Buffer overflow aĴacks are not just restricted to Linux and “normal” com-
puters. There is a book

“iOS Hacker’s Handbook” by Miller et al, Wiley, 2012

which seem to describe buffer overflow aĴacks on iOS. A book from the same
publisher exists also for Android (from 2014) which seem to also feature buffer
overflow aĴacks. Alas I do not own copies of these books.

13

http://jabsoft.io/2013/09/25/are-buffer-overflows-solved-yet-a-historical-tale/
http://jabsoft.io/2013/09/25/are-buffer-overflows-solved-yet-a-historical-tale/
http://phrack.org/issues/49/14.html
http://www.mgraziano.info/docs/stsi2010.pdf
http://phrack.org/issues/58/4.html

A Crash-Course for GDB

If you want to try out the examples from KEATS it might be helpful to know
about the following commands of the GNU Debugger:

• (l)ist n – lists the source file from line n, the number can be omiĴed

• disassemble fun-name – show the assembly code of a function

• run args – starts the program, potential arguments can be given

• (b)reak line-number – sets break point

• (c)ontinue – continue execution until next breakpoint

• x/nxw addr – prints out nwords starting from address addr, the address
could be $esp for looking at the content of the stack

• x/nxb addr – prints out n bytes

14

1 char shellcode[] =
2 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89"
3 "\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c"
4 "\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff"
5 "\xff\xff/bin/sh";
6 char large_string[128];
7

8 void main() {
9 char buffer[96];
10 int i;
11 long *long_ptr = (long *) large_string;
12

13 for (i = 0; i < 32; i++)
14 *(long_ptr + i) = (int) buffer;
15

16 for (i = 0; i < strlen(shellcode); i++)
17 large_string[i] = shellcode[i];
18

19 strcpy(buffer,large_string);
20 }

Figure 2: Overwriting a buffer with a string containing a payload.

15

