
Handout 9 (Static Analysis)
If we want to improve the safety and security of our programs, we need a more
principled approach to programming. Testing is good, but as Dijkstra famously
wrote:

“Program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.”

While such amore principled approach has been the subject of intense study for
a long, long time, only in the past few years some impressive results have been
achieved. One is the complete formalisation and (mathematical) verification of
a microkernel operating system called seL4.

http://sel4.systems

In 2011 this work was included in the MIT Technology Review in the annual
list of the world’s ten most important emerging technologies.1 While this work
is impressive, its technical details are too enormous for an explanation here.
Therefore let us look at somethingmuch simpler, namely finding out properties
about programs using static analysis.

Static analysis is a technique that checks properties of a programwithout ac-
tually running the program. This should raise alarm bells with you—because
almost all interesting properties about programs are equivalent to the halting
problem, which we know is undecidable. For example estimating the memory
consumption of programs is in general undecidable, just like the halting prob-
lem. Static analysis circumvents this undecidability-problem by essentially al-
lowing answers yes and no, but also don’t know. With this “trick” even the halt-
ing problem becomes decidable…for example we could always say don’t know.
Of course this would be silly. The point is that we should be striving for a
method that answers as often as possible either yes or no—just in cases when it
is too difficult we fall back on the don’t-know-answer. This might sound all like
abstract nonsense. Therefore let us look at a concrete example.

A Simple, Idealised Programming Language

Our starting point is a small, idealised programming language. It is idealised
becausewe cut several corners in comparisonwith real programming languages.
The language we will study contains, amongst other things, variables holding
integers. Using static analysis, we want to find out what the sign of these inte-
gers (positive or negative) will be when the program runs. This sign-analysis
seems like a very simple problem. But it will turn out even such simple prob-
lems, if approached naively, are in general undecidable, just like Turing’s halt-
ing problem. I let you think why?

1http://www2.technologyreview.com/tr10/?year=2011
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Is sign-analysis of variables an interesting problem? Well, yes—if a com-
piler can find out that for example a variable will never be negative and this
variable is used as an index for an array, then the compiler does not need to
generate code for an underflow-test. Remember some languages are immune
to buffer-overflowaĴacks, but they need to addunderflowand overflow checks
everywhere. If the compiler can omit the underflow test, for example, then this
can potentially drastically speed up the generated code.

What do programs in our programming language look like? The following
grammar gives a first specification:

⟨Stmt⟩ ::= ⟨label⟩ :
| ⟨var⟩ := ⟨Exp⟩
| jmp? ⟨Exp⟩ ⟨label⟩
| goto ⟨label⟩

⟨Prog⟩ ::= ⟨Stmt⟩… ⟨Stmt⟩

⟨Exp⟩ ::= ⟨Exp⟩ + ⟨Exp⟩
| ⟨Exp⟩ * ⟨Exp⟩
| ⟨Exp⟩ = ⟨Exp⟩
| ⟨num⟩
| ⟨var⟩

I assume you are familiar with such grammars.2 There are three main syntactic
categories: statments and expressions as well as programs, which are sequences
of statements. Statements are either labels, variable assignments, conditional
jumps (jmp?) and unconditional jumps (goto). Labels are just strings, which
can be used as the target of a jump. We assume that in every program the la-
bels are unique—otherwise if there is a clash we do not know where to jump
to. The conditional jumps and variable assignments involve (arithmetic) ex-
pressions. Expressions are either numbers, variables or compound expressions
built up from +, * and = (for simplicity reasons we do not consider any other
operations). We assume we have negative and positive numbers, …-2, -1, 0, 1,
2…An example program that calculates the factorial of 5 is as follows:

1 a := 1
2 n := 5
3 top:
4 jmp? n = 0 done
5 a := a * n
6 n := n + -1
7 goto top
8 done:

Each line of the program contains a statement. In the first two lines we assign
values to the variables a and n. In line 4 we test whether n is zero, in which
case we jump to the end of the program marked with the label done. If n is not
zero, we multiply the content of a by n, decrease n by one and jump back to
the beginning of the loop, marked with the label top. Another program in our
language is shown in Figure 1. I let you think what it calculates.

2http://en.wikipedia.org/wiki/Backus–Naur_Form
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n := 6
m1 := 0
m2 := 1

loop:
jmp? n = 0 done
tmp := m2
m2 := m1 + m2
m1 := tmp
n := n + -1
goto top

done:

Figure 1: A mystery program in our idealised programming language. Try to
find out what it calculates!

Even if our language is rather small, it is still Turing complete—meaning
quite powerful. However, discussing this fact in more detail would lead us too
far astray. Clearly, our programming is rather low-level and not very comfort-
able forwriting programs. It is inspired bymachine code, which is the code that
is actually executed by a CPU. So a more interesting question is what is miss-
ing in comparison with real machine code? Well, not much…in principle. Real
machine code, of course, contains many more arithmetic instructions (not just
addition and multiplication) and many more conditional jumps. We could add
these to our language if we wanted, but complexity is really beside the point
here. Furthermore, real machine code has many instructions for manipulating
memory. We do not have this at all. This is actually a more serious simpli-
fication because we assume numbers to be arbitrary small or large, which is
not the case with real machine code. In real code basic number formats have a
range and might over-flow or under-flow from this range. Also the number of
variables in our programs is potentially unlimited, while memory in an actual
computer, of course, is always limited somehow on any actual. To sum up,
our language might look very simple, but it is not completely removed from
practically relevant issues.

An Interpreter

Designing a language is like playing god: you can saywhat names for variables
you allow; what programs should look like; most importantly you can decide
what each part of the program should mean and do. While our language is
rather simple and the meaning is rather straightforward, there are still places
where we need to make a real choice. For example with conditional jumps, say
the one in the factorial program:

jmp? n = 0 done
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How should they work? We could introduce Booleans (true and false) and
then jump only when the condition is true. However, since we have numbers
in our language anyway, why not just encoding true as zero, and false as any-
thing else? In thiswaywe can dispensewith the additional concept of Booleans,
but also we could replace the jump above by

jmp? n done

which behaves exactly the same. But what does it mean that two jumps behave
the same?

I hope the above discussion makes it already clear we need to be a bit more
careful with our programs. Below we shall describe an interpreter for our pro-
grams, which specifies exactly how programs are supposed to be run…at least
we will specify this for all good programs. By good programs we mean where
for example all variables are initialised. Our interpreter will just crash if it can-
not find out the value for a variable, because it is not initialised.

First we will pre-process our programs. This will simplify our definition of
our interpreter later on. We will transform programs into snippets.
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