
Handout 3 (Buffer Overflow AĴacks)
By far themost popular aĴackmethod on computers are buffer overflowaĴacks
or variations thereof. The popularity is unfortunate becausewe nowadays have
technology in place to prevent them effectively. But these kind of aĴacks are
still very relevant even today since there are many legacy systems out there
and also many modern embedded systems often do not take any precautions
to prevent such aĴacks.

To understand how buffer overflow aĴacks work, we have to have a look
at how computers work “under the hood” (on the machine level) and also un-
derstand some aspects of the C/C++ programming language. This might not be
everyday fare for computer science students, but who said that criminal hack-
ers restrict themselves to everyday fare? Not to mention the free-riding script-
kiddies who use this technology without even knowing what the underlying
ideas are. If you want to be a good security engineer who needs to defend such
aĴacks, then beĴer you get to know the details.

For buffer overflow aĴacks to work, a number of innocent design decisions,
which are really benign on their own, need to conspire against you. All these
decisions were taken at a time when there was no Internet: C was introduced
around 1973; the Internet TCP/IP protocol was standardised in 1982 by which
time there weremaybe 500 servers connected (and all users werewell-behaved,
mostly academics); Intel’s first 8086 CPUs arrived around 1977. So nobody of
the “forefathers” can really be blamed, but as mentioned above we should al-
ready beway beyond the point that buffer overflowaĴacks areworth a thought.
Unfortunately, this is far from the truth. I let you ponder why?

One such “benign” design decision is how the memory is laid out into dif-
ferent regions for each process.

text

heap

stack

lower
address

higher
address

grows
older

newer

The text region contains the program code (usually this region is read-only).
The heap stores all data the programmer explicitly allocates. For us the most
interesting region is the stack, which contains data mostly associated with the
control flow of the program. Notice that the stack grows from higher addresses
to lower addresses (i.e. from the back to the front). That means that older items
on the stack will be stored behind, or after, newer items. Let’s look a bit closer

1

what happens with the stack when a program is running. Consider the follow-
ing simple C program.

1 void foo(int a, int b, int c) {
2 char buffer1[6] = "abcde";
3 char buffer2[10] = "123456789";
4 }
5

6 void main() {
7 foo(1,2,3);
8 }

The main function calls in Line 7 the function foo with three arguments. Foo
creates two (local) buffers, but does not do anything interesting with them. The
only purpose of this program is to illustrate what happens behind the scenes
with the stack. The interesting question is what will the stack be after Line 3
has been executed? The answer can be illustrated as follows:

main mainmain

arg3=3

arg2=2

arg1=1

ret

last sp

buf1

buf2

back to main()

On the left is the stack before foo is called; on the right is the stack after foo
finishes. The function call to foo in Line 7 pushes the arguments onto the stack
in reverse order—shown in the middle. Therefore first 3 then 2 and finally
1. Then it pushes the return address onto the stack where execution should
resume once foo has finished. The last stack pointer (sp) is needed in order to
clean up the stack to the last level—in fact there is no cleaning involved, but just
the top of the stack will be set back. So the last stack pointer also needs to be
stored. The two buffers inside foo are on the stack too, because they are local
data within foo. Consequently the stack in the middle is a snapshot after Line
3 has been executed. In case you are familiar with assembly instructions you
can also read off this behaviour from the machine code that the gcc compiler
generates for the program above:1

1You can make gcc generate assembly instructions if you call it with the -S option, for example
gcc -S out in.c . Or you can look at this code by using the debugger. How to do this will be
explained later.

2

1 _main:
2 push %ebp
3 mov %esp,%ebp
4 sub %0xc,%esp
5 movl $0x3,0x8(%esp)
6 movl $0x2,0x4(%esp)
7 movl $0x1,(%esp)
8 call 0x8048394 <foo>
9 leave
10 ret

1 _foo:
2 push %ebp
3 mov %esp,%ebp
4 sub $0x10,%esp
5 movl $0x64636261,-0x6(%ebp)
6 movw $0x65,-0x2(%ebp)
7 movl $0x34333231,-0x10(%ebp)
8 movl $0x38373635,-0xc(%ebp)
9 movw $0x39,-0x8(%ebp)
10 leave
11 ret

On the left you can see how the function main prepares in Lines 2 to 7 the stack
before calling the function foo. You can see that the numbers 3, 2, 1 are stored
on the stack (the register $esp refers to the top of the stack). On the right you
can see how the function foo stores the two local buffers onto the stack and
initialises them with the given data (Lines 2 to 9). Since there is no real com-
putation going on inside foo, the function then just restores the stack to its old
state and crucially sets the return address where the computation should re-
sume (Line 9 in the code on the left-hand side). The instruction ret then trans-
fers control back to the function main to the the instruction just after the call to
foo, that is Line 9.

Another part of the “conspiracy” of buffer overflow aĴacks is that library
functions in C look typically as follows:

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] != "\0") {

dst[i] = src[i];
i = i + 1;

}
}

This function copies data from a source src to a destination dst. The impor-
tant point is that it copies the data until it reaches a zero-byte ("\0"). This is a
convention of the C language which assumes all strings are terminated by such
a zero-byte.

The central idea of the buffer overflow aĴack is to overwrite the return ad-
dress on the stack. This address decides where the control flow of the program
should resume once the function at hand has finished its computation. So if we
can control this address, then we can modify the control flow of a program. To
launch an aĴack we need somewhere in a function a local a buffer, say

char buf[8];

which is filled by some user input. The corresponding stack of such a function
will look as follows

3

main

arg3=3

arg2=2

arg1=1

ret

last sp

buf $esp

??

jump to \x080483f4

We need to fill this buffer over its limit of 8 characters so that it overwrites the
stack pointer and then also overwrites the return address. If, for example, we
want to jump to a specific address in memory, say, \x080483f4 then we can fill
the buffer with the data

char buf[8] = "AAAAAAAABBBB\xf4\x83\x04\x08";

The first eight As fill the buffer to the rim; the next four Bs overwrite the stack
pointer (with what data we overwrite this part is usually not important); then
comes the address we want to jump to. Notice that we have to give the address
in the reverse order. All addresses on Intel CPUs need to be given in this way.
Since the string is enclosed in double quotes, the C convention is that the string
internally will automatically be terminated by a zero-byte. If the programmer
uses functions like strcpy for filling the buffer buf, then we can be sure it will
overwrite the stack in thismanner—since it will copy everything up to the zero-
byte. Notice that this overwriting of the buffer onlyworks since the newer item,
the buffer, is stored on the stack before the older items, like return address and
arguments. If it had be the other way around, then such an overwriting by
overflowing a local buffer would just not work. If the designers of C had just
been able to foresee what headaches their way of arranging the stack caused in
the time where computers are accessible from everywhere.

What the outcome of such an aĴack is can be illustratedwith the code shown
in Figure 1. Under “normal operation” this program ask for a login-name and
a password. Both of which are stored in char buffers of length 8. The function
match tests whether two such buffers contain the same content. If yes, then the
function lets you “in” (by printing Welcome). If not, it denies access (by printing
Wrong identity). The vulnerable function is get_line in Lines 11 to 19. This
function does not take any precautions about the buffer of 8 characters being
filled beyond its 8-character-limit. Let us suppose the login name is test. Then
the buffer overflow can be triggeredwith a specially crafted string as password:

AAAAAAAABBBB\x2c\x85\x04\x08\n

The address at the end happens to be the one for the function welcome(). This
means even with this input (where the login name and password clearly do

4

not match) the program will still print out Welcome. The only information we
need for this aĴack to work is to know where the function welcome() starts
in memory. This information can be easily obtained by starting the program
inside the debugger and disassembling this function.

$ gdb C2
GNU gdb (GDB) 7.2-ubuntu
(gdb) disassemble welcome

C2 is the name of the program and gdb is the name of the debugger. The output
will be something like this

0x0804852c <+0>: push %ebp
0x0804852d <+1>: mov %esp,%ebp
0x0804852f <+3>: sub $0x4,%esp
0x08048532 <+6>: movl $0x8048690,(%esp)
0x08048539 <+13>: call 0x80483a4 <puts@plt>
0x0804853e <+18>: movl $0x0,(%esp)
0x08048545 <+25>: call 0x80483b4 <exit@plt>

indicating that the function welcome() starts at address 0x0804852c (top ad-
dress in the left column).

This kind of aĴackwas very popularwith commercial programs that needed
a key to be unlocked. Historically, hackers first broke the rather weak en-
cryption of these locking mechanisms. After the encryption had been made
stronger, hackers used buffer overflow aĴacks as shown above to jump directly
to the part of the program that was intended to be only available after the cor-
rect key was typed in.

Paylods
Unfortunately, muchmore harm can be caused by buffer overflow aĴacks. This
is achieved by injecting code that will be run once the return address is appro-
priately modified. Typically the code that will be injected starts a shell. This
gives the aĴacker the ability to run programs on the target machine and to have
a good look around, provided the aĴacked process was not already running as
root.2 In order to be send as part of the string that is overflowing the buffer, we
need the code to be represented as a sequence of characters. For example

char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89"
"\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c"
"\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\xdc\xff"
"\xff\xff/bin/sh";

2In that case the aĴacker would already congratulate him or herself to another computer under
full control.

5

1 #include <string.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4

5 // Since gets() is insecure and produces lots
6 // of warnings, thereofre I use my own input
7 // function instead.
8 int i;
9 char ch;
10

11 void get_line(char *dst) {
12 char buffer[8];
13 i = 0;
14 while ((ch = getchar()) != '\n') {
15 buffer[i++] = ch;
16 }
17 buffer[i] = '\0';
18 strcpy(dst, buffer);
19 }
20

21 int match(char *s1, char *s2) {
22 while(*s1 != '\0' && *s2 != '\0' && *s1 == *s2){
23 s1++; s2++;
24 }
25 return(*s1 - *s2);
26 }
27

28 void welcome() { printf("Welcome!\n"); exit(0); }
29 void goodbye() { printf("Wrong identity, exiting!\n"); exit(1); }
30

31 int main(){
32 char name[8];
33 char pw[8];
34

35 printf("login: ");
36 get_line(name);
37 printf("password: ");
38 get_line(pw);
39

40 if(match(name, pw) == 0)
41 welcome();
42 else
43 goodbye();
44 }

Figure 1: A vulnerable login implementation.

6

These characters represent the machine code for opening a shell. It seems ob-
taining such a string requires higher-education in the architecture of the target
system. But it is actually relatively simple: First there are many such string
ready-made—just a quick Google query away. Second, tools like the debugger
can help us again. We can just write the code we want in C, for example this
would be the program for starting a shell:

#include <stdio.h>

int main()
{ char *name[2];

name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);

}

Once compiled, we can use the debugger to obtain the machine code, or even
the ready-made encoding as character sequence.

While easy, obtaining this string is not entirely trivial. Remember the func-
tions in C that copy or fill buffers work such that they copy everything until the
zero byte is reached. Unfortunately the “vanilla” output from the debugger
for the shell-program above will contain such zero bytes. So a post-processing
phase is needed to rewrite the machine code in a way that it does not contain
any zero bytes. This is like some works of literature that have been wriĴen so
that the leĴer e, for example, is avoided. The technical term for such a litera-
ture work is lipogram.3 For rewriting the machine code, you might need to use
clever tricks like

xor %eax, %eax

This instruction does not contain any zero-byte when encoded as string, but
produces a zero-byte on the stack when run.

Having removed the zero-bytes we can craft the string that will be send to
the target computer. This of course requires that the buffer we are trying to
aĴack can at least contain the shellcode we want to run. But as you can see this
is only 47 bytes, which is a very low bar to jump over. More formidable is the
choice of finding the right address to jump to. The string is typically of the form

shell code“

”
3The most famous example of a lipogram is a 50,000 words novel titled Gadsby, see https:

//archive.org/details/Gadsby.

7

https://archive.org/details/Gadsby
https://archive.org/details/Gadsby

where we need to be very precise with the address with which we will over-
write the buffer. It has to be precisely the first byte of the shellcode. While this
is easy with the help of a debugger (as seen before), we typically cannot run
anything, including a debugger, on the machine yet we target. And the ad-
dress is very specific to the setup of the target machine. One way of finding out
what the right address is is to try out one by one every possible address until
we get lucky. With the large memories available today, however, the odds are
long. And if we try out too many possible candidates too quickly, we might be
detected by the system administrator of the target system.

We can improve our odds considerably by following a clever trick. Instead
of adding the shellcode at the beginning of the string, we should add it at the
end, just before we overflow the buffer, for example

shell code

“

”
Thenwe can fill up the gray part of the string with NOP operations. The code for
this operation is \0x90. It is available on every architecture and its purpose in a
CPU is to do nothing apart fromwaiting a small amount of time. If we now use
an address that lets us jump to any address in the gray area we are done. The
target machine will execute these NOP operations until it reaches the shellcode.
A moment of thought can convince you that this trick can hugely improve our
odds of finding the right address—depending on the size of the buffer, it might
only take a few tries to get the shellcode to run. And then we are in. The code
for such an aĴack is show in Figure 2.

A Crash-Course for GDB

• (l)ist n – listing the source file from line n

• disassemble fun-name

• run args – starts the program, potential arguments can be given

• (b)reak line-number – set break point

• (c)ontinue – continue execution until next breakpoint in a line number

• x/nxw addr – print out n words starting from address addr, the address
could be $esp for looking at the content of the stack

• x/nxb addr – print out n bytes

8

If you want to know more about buffer overflow aĴacks, the original Phrack
article “Smashing The Stack For Fun And Profit” by Elias Levy (also known as
Aleph One) is an engaging read:

http://phrack.org/issues/49/14.html

This is an article from 1996 and some parts are not up-to-date anymore. The
article called “Smashing the Stack in 2010”

http://www.mgraziano.info/docs/stsi2010.pdf

updates, as the name says, most information to 2010.

9

http://phrack.org/issues/49/14.html
http://www.mgraziano.info/docs/stsi2010.pdf

1 char shellcode[] = ...
2 char large_string[128];
3

4 void main() {
5 char buffer[96];
6 int i;
7 long *long_ptr = (long *) large_string;
8

9 for (i = 0; i < 32; i++)
10 *(long_ptr + i) = (int) buffer;
11

12 for (i = 0; i < strlen(shellcode); i++)
13 large_string[i] = shellcode[i];
14

15 strcpy(buffer,large_string);
16 }

Figure 2: Overwriting a buffer with a paylod.

10

