Access Control and
Privacy Policies (3)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)
(I have put a temporary link in there.)

one general defence mechanism is
defence in depth

Defence in Depth

@ overlapping systems designed to provide
security even if one of them fails.

Defence in Depth

° OVCP'OPPing systems desighed to provide

security even if one of them fails.

otherwise your “added security” can become the
point of failure

PALs

@ Permissive Action Links prevent unauthorised use
of nuclear weapons (so the theory)

@ Permi
Of nud

PALs

US Air Force's Strategic Air Com-
mand worried that in times of need
the codes would not be available, so
until 1977 quietly decided o set them
to 00000000...

use

PALs

US Air Force's Strategic Air Com- | qe
mand worried that in times of need

the codes would not be available, so
until 1977 quietly decided to set them

to 00000000...

@ Permi
Of nud

modern PALs also include a 2-person rule

@ until 1998, Britain had nuclear weapons that could
be launched from airplanes

@ until 1998, Britain had nuclear weapons that could
be launched from airplanes

@ these weapons were armed with a bicycle key

nuclear weapon keys bicycle lock

@ until 1998, Britain had nuclear weapons that could
be launched from airplanes

@ these weapons were armed with a bicycle key

nuclear weapon keys bicycle lock

@ the current Trident nuclear weapons can be
launched from a submarine without any code
being transmitted

Access Control in Unix

@ access control provided by the OS
@ authenticate principals (login)

@ mediate access to files, ports, processes
according to roles (user ids)

@ roles get attached with privileges

principle of least privilege:
programs should only have as much
privilege as they need

Access Control in Unix (2)

@ the idea is to restrict access to files and
therefore lower the consequences of an attack

priviledged
process

«—

Interface

unpriviledged
process

(—) Internet

Process Ownership

@ access control in Unix is very coarse

root
user; usersy ...www, mail, Ip

root has UID =0

Process Ownership

@ access control in Unix is very coarse

root
user; usersy ...www, mail, Ip

root has UID = 0
you also have groups that can share access to a file
but it is difficult to exclude access selectively

Access Control in Unix (2)

@ privileges are specified by file access permissions
("everything is a file")
@ there are 9 (plus 2) bits that specify the
permissions of a file
$ 1s — la
“IrWXIXW—I—— foo_file.txt

Login Process

@ login processes run under UID =0
ps —axl | grep login
@ after login, shells run under UID = user (e.g. 501)

id cu

Login Process

@ login processes run under UID =0
ps —axl | grep login
@ after login, shells run under UID = user (e.g. 501)
id cu

@ non-root users are not allowed to change the UID
— would break access control

@ but needed for example for passwd

Setuid and Setgid

The solution is that unix file permissions are 9 +
2 Bits: Setuid and Setgid Bits

@ When a file with setuid is executed, the resulting
process will assume the UID given to the owner

of the file.

@ This enables users fo create processes as root
(or another user).

@ Essential for changing passwords, for example.

chmod 4755 fobar_file

Privilege Separation in
OpenSSH

Monitor
ﬁ (—) Internet

priviledged unpriviledged
process processes

@ pre-authorisation slave
@ post-authorisation

@ 25% codebase is privileged, 75% is unprivileged

Network Applications

ideally network application in Unix should be
designed as follows:

@ need two distinct processes
@ one that listens to the network; has no privilege
@ one that is privileged and listens to the latter only (but
does not trust it)
@ fo implement this you need a parent process,
which forks a child process

@ this child process drops privileges and listens to
hostile data

@ after authentication the parent forks again and
the new child becomes the user

Famous Security Flaws in Unix

o lpr Only failure makes us experts. - Theo ol
had +| 9€ Raadt (OpenBSD, OpenSSH)

Famous Security Flaws in Unix

@ lpr unfortunately runs with root privileges; you
had the option to delete files after printing ...

Famous Security Flaws in Unix

@ lpr unfortunately runs with root privileges; you
had the option to delete files after printing ...

@ for debugging purposes (FreeBSD) Unix provides
a “"core dump”, but allowed to follow links ...

Famous Security Flaws in Unix

@ lpr unfortunately runs with root privileges; you
had the option to delete files after printing ...

@ for debugging purposes (FreeBSD) Unix provides
a “"core dump”, but allowed to follow links ...

@ mkdir foo is owned by root
—-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then
changes to ownership to the user’s id
(automated with a shell script)

Other Problems

There are thing's you just cannot solve on the
programming side:

@ for system maintenance you often have
cron-jobs cleaning /tmp

@ attacker:
mkdir /tmp/a; cat > /tmp/a/passwd
@ root:
rm /tmp/*/*:
@ attacker:
rm /tmp/a/passwd; rmdir /tmp/a;
In -s /etc /tmp/a

Security Levels

Unix essentially can only distinguish between two
security levels (root and non-root).

@ In military applications you often have many
security levels (top-secret, secret, confidential,
unclassified)

Security Levels

Unix essentially can only distinguish between two
security levels (root and non-root).

@ In military applications you often have many
security levels (top-secret, secret, confidential,
unclassified)

@ Information flow: Bell — La Pudela model

@ read: your own level and below
@ write: your own level and above

Security Levels (2)

@ Bell — La Pudela preserves data secrecy, but not
data integrity

Security Levels (2)

@ Bell — La Pudela preserves data secrecy, but not
data integrity

@ Biba model is for data integrity

@ read: your own level and above
@ write: your own level and below

Access Control in 2000

According to Ross Anderson (1st edition of his
book), some senior Microsoft people held the
following view:

Access control does not matter. Computers are becoming‘
single-purpose or single-user devices. Single-purpose de-
vices, such as Web servers that deliver a single service,
don't need much in the way of access control as there's
nothing for operating system access controls to do; the job
of separating users from each other is best left to applica-
tion code. As for the PC on your desk, if all the software
on it comes from a single source, then again there's no need
for the operating system to provide separation. (in 2000)

Research Problems

@ with access control we are back to 1970s

rGoing all the way back to early time-sharing systems we
systems people regarded the users, and any code they
wrote, as the mortal enemies of us and each other. We
were like the police force in a violent slum.

— Roger Needham

Research Problems

@ with access control we are back to 1970s

@ the largest research area in access control in
2000-07 has been "Trusted Computing”, but
thankfully it is dead now

@ a useful research area is to not just have robust
access control, but also usable access control —
by programmers and users
(one possible answer is operating system
virtualisation, e.g. Xen, VMWare)

Research Problems

with access control we are back to 1970s

the largest research area in access control in
2000-07 has been "Trusted Computing”, but
thankfully it is dead now

a useful research area is to not just have robust
access control, but also usable access control —
by programmers and users

(one possible answer is operating system
virtualisation, e.g. Xen, VMWare)

electronic voting

Mobile OS

@ iOS and Android solve the defence-in-depth
problem by sandboxing applications

@ you as developer have to specify the resources an
application needs

@ the OS provides a sandbox where access is
restricted to only these resources

Security Theater

Security theater is the practice of investing in
countermeasures intended to provide the feeling
of improved security while doing little or nothing
to actually achieve it. Bruce Schneier

