
Handout 1 (Security Engineering)
Much of the material and inspiration in this module is taken from the works
of Bruce Schneier, Ross Anderson and Alex Halderman. I think they are the
world experts in the area of security engineering. I especially like that they
argue that a security engineer requires a certain security mindset. Bruce Schneier
for example writes:

“Security engineers — at least the good ones — see the world differently.
They can’t walk into a store without noticing how they might shoplift.
They can’t use a computer without wondering about the security vulner-
abilities. They can’t vote without trying to figure out how to vote twice.
They just can’t help it.”

“Security engineering…requires you to think differently. You need to fig-
ure out not how something works, but how something can be made to not
work. You have to imagine an intelligent and malicious adversary inside
your system …, constantly trying new ways to subvert it. You have to
consider all the ways your system can fail, most of them having nothing to
do with the design itself. You have to look at everything backwards, upside
down, and sideways. You have to think like an alien.”

In this module I like to teach you this security mindset. This might be a mind-
set that you think is very foreign to you—after all we are all good citizens and
not hack into things. I beg to differ: You have this mindset already when in
school you were thinking, at least hypothetically, about ways in which you can
cheat in an exam (whether it is about hiding notes or looking over the shoul-
ders of your fellow pupils). Right? To defend a system, you need to have this
kind mindset and be able to think like an aĴacker. This will include under-
standing techniques that can be used to compromise security and privacy in
systems. This will many times result in insights where well-intended security
mechanisms made a system actually less secure.

Warning! However, don’t be evil! Using those techniques in the real world
may violate the law or King’s rules, and it may be unethical. Under some
circumstances, even probing for weaknesses of a system may result in severe
penalties, up to and including expulsion, fines and jail time. Acting lawfully
and ethically is your responsibility. Ethics requires you to refrain from doing
harm. Always respect privacy and rights of others. Do not tamper with any of
King’s systems. If you try out a technique, always make doubly sure you are
working in a safe environment so that you cannot cause any harm, not even
accidentally. Don’t be evil. Be an ethical hacker.

In this lecture I want to make you familiar with the security mindset and dispel
the myth that encryption is the answer to all security problems (it is certainly
often a part of an answer, but almost always never a sufficient one). This is
actually an important thread going through the whole course: We will assume

1

that encryption works perfectly, but still aĴack “things”. By “works perfectly”
we mean that we will assume encryption is a black box and, for example, will
not look at the underlying mathematics and break the algorithms.1

For a secure system, it seems, four requirements need to come together: First
a security policy (what is supposed to be achieved?); second a mechanism (ci-
pher, access controls, tamper resistance etc); third the assurancewe obtain from
the mechanism (the amount of reliance we can put on the mechanism) and fi-
nally the incentives (the motive that the people guarding and maintaining the
system have to do their job properly, and also the motive that the aĴackers
have to try to defeat your policy). The last point is often overlooked, but plays
an important role. To illustrate this lets look at an example.

Chip-and-PIN is Surely More Secure?

The questions is whether the Chip-and-PIN system used with modern credit
cards is more secure than the older method of signing receipts at the till. On
first glance the answer seems obvious: Chip-and-PINmust be more secure and
indeed improved security was the central plank in the “marketing speak” of
the banks behind Chip-and-PIN. The earlier system was based on a magnetic
stripe or a mechanical imprint on the cards and required customers to sign re-
ceipts at the till whenever they bought something. This signature authorised
the transactions. Although in use for a long time, this system had some crucial
security flaws, including making clones of credit cards and forging signatures.

Chip-and-PIN, as the name suggests, relies on data being stored on a chip
on the card and a PIN number for authorisation. Even though the banks in-
volved trumpeted their system as being absolutely secure and indeed fraud
rates initially went down, security researchers were not convinced (especially
the group around Ross Anderson). To begin with, the Chip-and-PIN system
introduced a “new player” into the system that needed to be trusted: the PIN
terminals and their manufacturers. It was claimed that these terminals were
tamper-resistant, but needless to say this was a weak link in the system, which
criminals successfully aĴacked. Some terminals were even so skilfully manip-
ulated that they transmiĴed skimmed PIN numbers via built-in mobile phone
connections. To mitigate this flaw in the security of Chip-and-PIN, you need to
be able to vet quite closely the supply chain of such terminals. This is something
that is mostly beyond the control of customers who need to use these terminals.

To make maĴers worse for Chip-and-PIN, in around 2009 Ross Anderson
and his group were able to perform man-in-the-middle aĴacks against Chip-
and-PIN. Essentially they made the terminal think the correct PIN was entered
and the card think that a signature was used. This is a kind of protocol fail-
ure. After discovery, the flaw was mitigated by requiring that a link between
the card and the bank is established at every time the card is used. Even later
this group found another problem with Chip-and-PIN and ATMs which did

1Though fascinating this might be.

2

not generate random enough numbers (nonces) on which the security of the
underlying protocols relies.

The problem with all this is that the banks who introduced Chip-and-PIN
managedwith the new system to shift the liability for any fraud and the burden
of proof onto the customer. In the old system, the banks had to prove that
the customer used the card, which they often did not bother with. In effect,
if fraud occurred the customers were either refunded fully or lost only a small
amount of money. This taking-responsibility-of-potential-fraudwas part of the
“business plan” of the banks and did not reduce their profits too much.

Since banks managed to successfully claim that their Chip-and-PIN system
is secure, they were under the new system able to point the finger at the cus-
tomer when fraud occurred: customers must have been negligent losing their
PIN and they had almost no way of defending themselves in such situations.
That is why the work of ethical hackers like Ross Anderson’s group was so im-
portant, because they and others established that the bank’s claim that their
system is secure and it must have been the customer’s fault, was bogus. In 2009
the law changed and the burden of proof went back to the banks. They need to
prove whether it was really the customer who used a card or not.

This is a classic example where a security design principle was violated:
Namely, the one who is in the position to improve security, also needs to bear
the financial losses if things go wrong. Otherwise, you end upwith an insecure
system. In case of the Chip-and-PIN system, no good security engineer would
dare to claim that it is secure beyond reproach: the specification of the EMV
protocol (underlying Chip-and-PIN) is some 700 pages long, but still leaves
out many things (like how to implement a good random number generator).
No human being is able to scrutinise such a specification and ensure it contains
no flaws. Moreover, banks can add their own sub-protocols to EMV. With all
the experience we already have, it is as clear as day that criminals were bound
to eventually be able to poke holes into it and measures need to be taken to
address them. However, with how the systemwas set up, the banks had no real
incentive to come up with a system that is really secure. GeĴing the incentives
right in favour of security is often a tricky business. From a customer point of
view, the Chip-and-PIN system was much less secure than the old signature-
based method. The customer could now lose significant amounts of money.

Of Cookies and Salts
Lets look at another example which will help with understanding how pass-
words should be verified and stored. Imagine you need to develop a web-
application that has the feature of recording howmany times a customer visits
a page. For example in order to give a discount whenever the customer has
visited a webpage some x number of times (say x equal 5). There is one more
constraint: we want to store the information about the number of visits as a
cookie on the browser. I think, for a number of years the webpage of the New
York Times operated in this way: it allowed you to read ten articles per month

3

for free; if you wanted to read more, you had to pay. My best guess is that it
used cookies for recording how many times their pages was visited, because if
I switched browsers I could easily circumvent the restriction about ten articles.

To implement our web-application it is good to look under the hood what
happens when a webpage is displayed in a browser. A typical web-application
works as follows: The browser sends a GET request for a particular page to
a server. The server answers this request with a webpage in HTML (for our
purposes we can ignore the details about HTML). A simple JavaScript program
that realises a server answering with a “hello world” webpage is as follows:

1 var express = require('express');
2 var app = express();
3

4 app.get('/', function(request, response){
5 response.write('Hello World');
6 response.end()
7 });
8

9 // starting the server
10 app.listen(8000);

The interesting lines are 4 to 7 where the answer to the GET request is gener-
ated…in this case it is just a simple string. This program is run on the server
andwill be executed whenever a browser initiates such a GET request. You can
run this program on your computer and then direct a browser to the address
localhost:8000 in order to simulate a request over the internet.

For our web-application of interest is the feature that the server when an-
swering the request can store some information on the client’s side. This infor-
mation is called a cookie. The next time the browser makes another GET request
to the same webpage, this cookie can be read again by the server. We can use
cookies in order to store a counter that records the number of times our web-
page has been visited. This can be realised with the following small program

1 var express = require('express');
2 var cookie = require('cookie-parser')
3

4 var app = express();
5 app.use(cookie());
6

7 app.get('/', function(req, res){
8 var counter = parseInt(req.cookies.counter) || 0;
9 res.cookie('counter', counter + 1);
10 if (counter >= 5) {
11 res.write('You are a valued customer ' +
12 'visting the site ' + counter + ' times.');

4

13 } else {
14 res.write('This is visit number '+ counter +'!');
15 }
16 res.end();
17 });
18

19 app.listen(8000);

The overall structure of this program is the same as the earlier one: Lines 7 to
17 generate the answer to a GET-request. The new part is in Line 8 where we
read the cookie called counter. If present, this cookiewill be send togetherwith
the GET-request from the client. The value of this counter will come in form
of a string, therefore we use the function parseInt in order to transform it into
an integer. In case the cookie is not present, we default the counter to zero.
The odd looking construction ...|| 0 is realising this defaulting in JavaScript.
In Line 9 we increase the counter by one and store it back to the client (under
the name counter, since potentially more than one value could be stored). In
Lines 10 to 15 we test whether this counter is greater or equal than 5 and send
accordingly a specially grafted message back to the client.

Let us step back and analyse this program from a security point of view. We
store a counter in plain text on the client’s browser (which is not under our con-
trol). Depending on this value we want to unlock a resource (like a discount)
when it reaches a threshold. If the client deletes the cookie, then the counter
will just be reset to zero. This does not bother us, because the purported dis-
count will just not be granted. In this way we do not lose any (hypothetical)
money. What we need to be concerned about is, however, when a client ar-
tificially increases this counter without having visited our web-page. This is
actually a trivial task for a knowledgeable person, since there are convenient
tools that allow one to set a cookie to an arbitrary value, for example above our
threshold for the discount.

There seems to be no simple way to prevent this kind of tampering with
cookies, because the whole purpose of cookies is that they are stored on the
client’s side, which from the the server’s perspective is a potentially hostile en-
vironment. Whatwe need to ensure is the integrity of this counter in this hostile
environment. We could think of encrypting the counter. But this has two draw-
backs to do with the key for encryption. If you use a single, global key for all
the clients that visit our site, then we risk that our whole “business” might col-
lapse in the event this key gets known to the outsideworld. Then all cookies we
might have set in the past, can now be decrypted and manipulated. If, on the
other hand, we use many “private” keys for the clients, then we have to solve
the problem of having to securely store this key on our server side (obviously
we cannot store the keywith the client because then the client again has all data
to tamper with the counter; and obviously we also cannot encrypt the key, lest
we can solve an impossible chicken-and-egg problem). So encryption seems to
not solve the problem we face with the integrity of our counter.

5

Fortunately, hash functions seem to be more suitable for our purpose. Like
encryption, hash functions scramble data in such a way that it is easy to cal-
culate the output of a hash function from the input. But it is hard (i.e. prac-
tically impossible) to calculate the input from knowing the output. Therefore
hash functions are often called one-way functions…you cannot go back from the
output to the input (without some tricks, see below). There are several such
hashing function. For example SHA-1 would hash the string "hello world" to
produce the hash-value

2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

Another handy feature of hash functions is that if the input changes only a liĴle,
the output changes drastically. For example "iello world" produces under
SHA-1 the output

d2b1402d84e8bcef5ae18f828e43e7065b841ff1

That means it is not predictable what the output will be from just looking at
input that is “close by”.

We can use hashes in our web-application and store in the cookie the value
of the counter in plain text but together with its hash. We need to store both
pieces of data in such a way that we can extract them again later on. In the code
below I will just separate them using a "-", for example

1-356a192b7913b04c54574d18c28d46e6395428ab

for the counter 1. If we now read back the cookie when the client visits our
webpage, we can extract the counter, hash it again and compare the result to
the stored hash value inside the cookie. If these hashes disagree, then we can
deduce that the cookie has been tampered with. Unfortunately, if they agree,
we can still not be entirely sure that not a clever hacker has tampered with the
cookie. The reason is that the hacker can see the clear text part of the cookie, say
3, and also its hash. It does not takemuch trial and error to find out thatwe used
the SHA-1 hashing function and then the hacker can graft a cookie accordingly.
This is eased by the fact that for SHA-1 many strings and corresponding hash-
values are precalculated. Type, for example, into Google the hash value for
"hello world" and you will actually preĴy quickly find that it was generated
by input string "hello world". Similarly for the hash-value for 1. This defeats
the purpose of a hashing function and thus would not help us with our web-
applications and later also not with how to store passwords properly.

There is one ingredient missing, which happens to be called salts. Salts are
random keys, which are added to the counter before the hash is calculated.
In our case we must keep the salt secret. As can be see in Figure 1, we need
to extract from the cookie the counter value and its hash (Lines 19 and 20).
But before hashing the counter again (Line 22) we need to add the secret salt.
Similarly, when we set the new increased counter, we will need to add the salt
before hashing (this is done in Line 15). Our web-application will now store
cookies like

6

1 var express = require('express');
2 var cookie = require('cookie-parser')
3 var crypto = require('crypto');
4

5 var app = express();
6 app.use(cookie());
7

8 var salt = 'secret key'
9

10 function mk_hash(s) {
11 return crypto.createHash('sha1').update(s).digest('hex')
12 }
13

14 function mk_cookie(c) {
15 return c.toString() + '-' + mk_hash(c.toString() + salt)
16 }
17

18 function gt_cookie(s) {
19 var splits = s.split("-", 2);
20 var counter = parseInt(splits[0])
21 var hash = splits[1]
22 if (mk_hash(counter.toString() + salt) == hash) {
23 return counter
24 } else {
25 return 0
26 }
27 }
28

29 app.get('/', function(req, res){
30 var counter = gt_cookie(req.cookies.counter) || 0;
31 res.cookie('counter', mk_cookie(counter + 1));
32 if (counter >= 5) {
33 res.write('You are a valued customer ' +
34 'visting the site ' + counter + ' times.');
35 } else {
36 res.write('This is visit number '+ counter +'!');
37 }
38 res.end();
39 });
40

41 // starting the server
42 app.listen(8000);
43 console.log("Server running at http://127.0.0.1:8000/");

Figure 1:

7

1 + salt - 8189effef4d4f7411f4153b13ff72546dd682c69
2 + salt - 1528375d5ceb7d71597053e6877cc570067a738f
3 + salt - d646e213d4f87e3971d9dd6d9f435840eb6a1c06
4 + salt - 5b9e85269e4461de0238a6bf463ed3f25778cbba
...

These hashes allow us to read and set the value of the counter, and also give us
confidence that the counter has not been tamperedwith. This of course depends
on being able to keep the salt secret. Once the salt is public, we beĴer ignore all
cookies and start seĴing them again with a new salt.

There is an interesting and very subtle point to note with respect to the New
York Times’ way of checking the number visits. Essentially they have their
‘resource’ unlocked at the beginning and lock it onlywhen the data in the cookie
states that the allowed free number of visits are up. As said before, this can be
easily circumvented by just deleting the cookie or by switching the browser.
This would mean the New York Times will lose revenue whenever this kind of
tampering occurs. The quick fix to require that a cookie must always be present
does not work, because then this newspaper will cut off any new readers, or
anyone who gets a new computer. In contrast, our web-application has the
resource (discount) locked at the beginning and only unlocks it if the cookie
data says so. If the cookie is deleted, well then the resource just does not get
unlocked. No mayor harm will result to us. You can see: the same security
mechanism behaves rather differently depending on whether the “resource”
needs to be locked or unlocked. Apart from thinking about the difference very
carefully, I do not know of any good “theory” that could helpwith solving such
security intricacies in any other way.

How to Store Passwords Properly?
While admiĴedly quite silly, the simple web-application in the previous sec-
tion should help with the more important question of how passwords should
be verified and stored. It is unbelievable that nowadays systems still do this
with passwords in plain text. The idea behind such plain-text passwords is of
course that if the user typed in foobar as password, we need to verify whether
it matches with the password that is already stored for this user in the sys-
tem. Why not doing this with plain-text passwords? But doing this verification
in plain text is really a bad idea. Unfortunately, evidence suggests it is still a
widespread practice. I leave you to think about why verifying passwords in
plain text is a bad idea.

Using hash functions, like in our web-application, we can do beĴer. They
allow us to not having to store passwords in plain text for verification whether
a password matches or not. We can just hash the password and store the hash-
value. And whenever the user types in a new password, well then we hash it
again and checkwhether the hash-values agree. Just like in theweb-application
before.

8

Lets analyse what happens when a hacker gets hold of such a hashed pass-
word database. That is the scenario we want to defend against.2 The hacker
has then a list of user names and associated hash-values, like

urbanc:2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

For a beginner-level hacker this information is of no use. It would not work to
type in the hash value instead of the password, because it will go through the
hashing function again and then the resulting two hash-values will not match.
One aĴack a hacker can try, however, is called a brute force aĴack. Essentially
this means trying out exhaustively all strings

a, aa, ..., ba, ..., zzz, ...

and so on, hash them and check whether they match with the hash-values in
the database. Such brute force aĴacks are surprisingly effective. With modern
technology (usually GPU graphic cards), passwords of moderate length only
need seconds or hours to be cracked. Well, the only defence we have against
such brute force aĴacks is to make passwords longer and force users to use the
whole spectrum of leĴers and keys for passwords. The hope is that this makes
the search space too big for an effective brute force aĴack.

Unfortunately, clever hackers have another ace up their sleeves. These are
called dictionary aĴacks. The idea behind dictionary aĴack is the observation
that only few people are competent enough to use sufficiently strong pass-
words. Most users (at least too many) use passwords like

123456, password, qwerty, letmein, ...

So an aĴacker just needs to compile a list as large as possible of such likely
candidates of passwords and also compute their hash-values. The difference
between a brute force aĴack, where maybe 280 many strings need to be con-
sidered, a dictionary aĴack might get away witch checking only 10 Million (re-
member the language English “only” contains 600,000 words). This is a drastic
simplification for aĴackers. Now if the aĴacker knows the hash-value of a pass-
word is

5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

then just a lookup in the dictionary will reveal that the plain-text passwordwas
password. What is good about this aĴack is that the dictionary can be precom-
piled in the “comfort of the hacker’s home” before an actual aĴack is launched.
It just needs sufficient storage space, which nowadays is preĴy cheap. A hacker
might in this way not be able to crack all passwords in our database, but even
being able to crack 50% can be serious damage for a large company (because

2If we could assume our servers can never be broken into, then storing passwords in plain text
would be no problem. The point, however, is that servers are never absolutely secure.

9

then youhave to think about how tomakeusers to change their old passwords—
a major hassle). And hackers are very industrious in compiling these dictio-
naries: for example they definitely include variations like passw0rd and also
include rules that cover cases like passwordpassword or drowssap (password
reversed). Historically, compiling a list for a dictionary aĴack is not as simple
as it might seem. At the beginning only “real” dictionaries were available (like
the Oxford English Dictionary), but such dictionaries are not “optimised” for
the purpose of passwords. The first real hard data about actually used pass-
words was obtained when a company called RockYou “lost” 32 Million plain-
text passwords. With this data of real-life passwords, dictionary aĴacks took
off. Compiling such dictionaries is nowadays very easy with the help of off-
the-shelf tools.

These dictionary aĴacks can be prevented byusing salts. Remember a hacker
needs to use the most likely candidates of passwords and calculate their hash-
value. If we add before hashing a password a random salt, like mPX2aq, then
the string passwordmPX2aq will almost certainly not be in the dictionary. Like
in the web-application in the previous section, a salt does not prevent us from
verifying a password. We just need to add the salt whenever the password is
typed in again.

There is a question whether we should use a single random salt for every
password in our database. A single salt would alreadymake dictionary aĴacks
considerably more difficult. It turns out, however, that in case of password
databases every password should get their own salt. This salt is generated at
the time when the password is first set. If you look at a Unix password file you
will find entries like

urbanc:$6$3WWbKfr1$4vblknvGr6FcDeF92R5xFn3mskfdnEn...:...

where the first part is the login-name, followed by a field 6 which specifies
which hash-function is used. After that follows the salt 3WWbKfr1 and after that
the hash-value that is stored for the password (which includes the salt). I leave
it to you to figure out how the password verificationwould need to work based
on this data.

There is a non-obvious benefit of using a separate salt for each password.
Recall that 123456 is a popular password that is most likely used by several of
your users (especially if the database contains millions of entries). If we use
no salt or one global salt, all hash-values will be the same for this password.
So if a hacker is in the business of cracking as much passwords as possible,
then it is a good idea to concentrate on those very popular passwords. This
is not possible if each password gets its own salt: since we assume the salt is
generated randomly, each version of 123456will be associated with a different
hash-value. This will make the life harder for an aĴacker.

Note another interesting point. The web-application from the previous sec-
tion was only secure when the salt was secret. In the password case, this is not
needed. The salt can be public as shown above in the Unix password file where
is actually stored as part of the password entry. Knowing the salt does not give

10

the aĴacker any advantage, but prevents that dictionaries can be precompiled.
The moral is that you should never store passwords in plain text. Never ever.

11

