Access Control and
Privacy Policies (7)

Email: christian.urban at kcl.ac.uk
Office: S51.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

Judgements

I'-F

Judgements

entails sign

V4

' - F(—asingle formula

f

Gamma
stands for a collection of formulas
("assumptions”)

Judgements

entails sign

V4

' - F(—asingle formula

f

Gamma
stands for a collection of formulas
("assumptions”)

Gimel (Phoenician), Gamma (Greek), C and 6 (Latin), Gim (Arabic),
?? (Indian), Ge (Cyrillic)

Inference Rules

premisses

conclusion

Inference Rules

premisses

P says F' = Q says F' A\ P says G

Inference Rules

premisses

conclusion

P says F = Q says F' A\ P says G
—_———— —\ NY—

N F F,

I'-Fy = F TI'FF

I' = Fy

' - F
I' = P says F

Digression: Proofs in CS

Formal proofs in CS sound like science fiction?

Digression: Proofs in CS

Formal proofs in CS sound like science fiction?
Completely irrelevant!

Digression: Proofs in CS

Formal proofs in CS sound like science fiction?
Completely irrelevant!

@ in 2008, verification of a small C-compiler

@ in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)
@ 200k loc of proof
@ 25 - 30 person years
@ found 160 bugs in the C code (144 by the proof)

published a proof about a
specification in a journal
(2005), ~31pages

Y,

Bob Harper Frank Pfenning
(CMU) (CMUV)

77

Bob Harper Frank Pfenning

(CMU) (CMU)

Andrew Appel
(Princeton)

published a proof about a
specification in a journal
(2005), ~31pages

relied on their proof in a
security critical application

Proof-Carrying Code
Idea:

developer user:
__P untrusted
code

web
server

Proof-Carrying Code

Idea:

user:
untrusted
code

developer

web

server e
certificate

Proof-Carrying Code

Idea:
devel user:
eve_oper' code untrusted
code
web
server a proof
certificate proof -
checker

Proof Alg

(Spec Me{erect}=H4lg)
i Spec*|4{Proof [={ Alg v

(Spec Me{erect}=H4lg) 9
i Spec*|4{Proof [={ Alg
21, (Spec (oot FH{Ag™

\' 4
51| Spec™ e{Proof j=p{ Alg
2, Proof j=p{ Alg™
somon Alg

Mars Pathfinder Mission 1997

@ despite NASA's famous testing procedure, the
lander crashed frequently on Mars

@ problem was an algorithm not used in the OS

Priority Inheritance Protocol

@ an algorithm that is widely used in real-time
operating systems

@ hash been "proved” correct by hand in a paper in
1983

@ but the first algorithm turned out to be
incorrect, despite the "proof”

Priority Inheritance Protocol

@ an algorithm that is widely used in real-time
operating systems

@ hash been "proved” correct by hand in a paper in
1983

@ but the first algorithm turned out to be
incorrect, despite the “proof"”

@ we specified the algorithm and then proved that
the specification makes “sense”

@ we implemented our specification in C on top of
PINTOS (Stanford)

@ our implementation was much more efficient than
their reference implementation

Regular Expression Matching

30

oScala V2 with simplifications

secs

aScala V3

oScala Internal

O R~ N W H O O

0 2000 4000 6000 8000 10000
as

Regular Expression Matching

oScala V2 with simplifications

51 aScalaVl
204 oPython 6 aScala V3
5
15+ 4 oScala Internal
10 w 3
8 2
57 1
0 0
0 5 10 15 20 25 30 0 2000 4000 6000 8000 10000
as

as

@ I needed a proof in order to make sure my
program is correct

Regular Expression Matching

oScala V2 with simplifications
aScala V1

aScala V3

oPython

oScala Internal

secs

O = N W h O O

0 5 10 15 20 25 30 0 2000 4000 6000 8000 10000
as as

@ I needed a proof in order to make sure my
program is correct

End Digression.
(Our small proof is 0.0005% of the OS-proof.)

One More Thing

@ I arrived at King's last year

@ Maxime Crochemore told me about a string
algorithm (suffix sorting) that appeared at a
conference in 2007 (ICALP)

@ "horribly incomprehensible”, no implementation,
but claims to be the best O(n + k) algorithm

One More Thing

I arrived at King's last year

Maxime Crochemore told me about a string
algorithm (suffix sorting) that appeared at a
conference in 2007 (ICALP)

“horribly incomprehensible”, no implementation,
but claims to be the best O(n + k) algorithm

Jian Jiang found 1 error and 1 superfluous step

he received 88% for the project and won the
prize for the best 7CCSMPRJ project

no proof ... yet

Trusted Third Party

Simple protocol for establishing a secure
connection via a mutually frusted 3rd party
(server):

Messagel A — S:A,B

Message 2 S— A :{KAB}KAS and {{KAB}KBS}KAS
Message 3 A — B : {K B}k,

Message 4 A — B :{m}k,,

Encrypted Messages

@ Alice sends a message m
Alice says m

Encrypted Messages

@ Alice sends a message m
Alice says m

@ Alice sends an encrypted message m
(with key K)
Alice says {m}x

Encrypted Messages

@ Alice sends a message m
Alice says m

@ Alice sends an encrypted message m
(with key K)
Alice says {m}x

@ Decryption of Alice's message
I' - Alice says {m}k T F Alicesays K

I' = Alice says m

Encryption

@ Encryption of a message
I' = Alice says m T I Alice says K

I' - Alice says {m}k

Trusted Third Party

@ Alice calls Sam for a key to communicate with Bob

@ Sam responds with a key that Alice can read and
a key Bob can read (pre-shared)

@ Alice sends the message encrypted with the key
and the second key it recieved

A sends S
S sends A
A sends B
A sends B

Connect(A, B)

{KaB}k,s and {{KaB}Kps}Kas
{KAB}KBS

{m}KAB

Sending Rule

I'-Psays F T PsendsQ: F
I' - Q says F

Sending Rule

I'-Psays F T PsendsQ: F

I' - Q says F

def

Psends@Q : F =
(Psays F') = (Qsays F)

Trusted Third Party

A sends S : Connect(A, B)
S says (Connect(A, B) =
{KAB}KAS A {{KAB}KBS}KAS)

Ssends A: {Kap}ras N {{KaB}Kps}Kas
Asends B: {Kap}tk,,

Asends B: {m}k,,

Trusted Third Party

A sends S : Connect(A, B)
S says (Connect(A, B) =
{KAB}KAS A {{KAB}KBS}KAS)

Ssends A: {Kap}ras N {{KaB}Kps}Kas
Asends B: {Kap}tk,,

Asends B: {m}k,,

I' = B says m?

Challenge-Response Protocol

@ an engine E and a tfransponder 1" share a key K
@ F sends out a nonce N (random number) to T
@ T responds with { N } x

@ if E receives {IN }k from T, it starts engine

Challenge-Response Protocol

E says N (start)
E sendsT : N (challenge)
(T says N) = (T sends E : {N } A
T sends E : Id(T")) (response)
T says K (key)
T says Id(T) (identity)
(E says {N}k A E says Id(T)) =
start_engine(T') (engine)

I' - start_engine(T')?

Exchange of a Fresh Key

A and B share the key K 45 and want to share
another key

@ assumption K 45 is only known to A and B

@ AsendsB: A, {Nalx,,
@ Bsends A : {Na+1, Np}k,;
@ Asends B : {Np + 1}k,
@ Bsends A : {K%", N3}k s

INE" is to be used in future messages
Assume K%’ is compromised by I

Exchange of a Fresh Key

A and B share the key K 45 and want to share
another key

@ assumption K 45 is only known to A and B

@ AsendsB: A, {Nalx,,

@ Bsends A : {Na+1, Np}k,;
@ Asends B : {Np + 1}k,

@ Bsends A : {K%", N3}k s
@ Asends B : {msg}gnew

INE" is to be used in future messages
Assume K%’ is compromised by I

The Attack

An intruder I convinces A to accept the
compromised key K%’

@ Asends B : A, {Na}k,z

@ Bsends A : {Na+ 1, N}k,

@ Asends B : {Np + 1}k,,

@ Bsends A : {K"%", N3}k, recorded by I

The Attack

An intruder I convinces A to accept the
compromised key K%’

Asends B : A, {Na} k.,

Bsends A: {Na+ 1, N}k,

Asends B : {Np + 1}k,,

Bsends A : {K"%", N3}k ,, recorded by I
Asends B : A, {Ma}x,.,

Bsends A: {Ms+ 1, Mp}k,,

AsendsB: {Mp+ 1}k,,

BsendsI : {K9%", Ng"*"} i ,, intercepted by I
Isends A : {K"ew, Nnew},

An intruder

The Attack

I convinces A to accept the

compromised key K%’

A sends B

Bsends A :
Asends B :
Bsends A :

A sends B

Bsends A :
Asends B :

Bsends I
I sends A
A sends B

. Aa {NA}KAB

{Na+1,NB}i,p

{NB +]‘}KAB

{K%%’, N5}k . recorded by I

: Ay {Ma}tK4p

{Ma+1, Mg}k,

{MB + 1}KAB

: {K9E"Y, Ng""} ik ,p, intercepted by I
KL N Y Kas

: {msg} oy

