
Handout 4 (Access Control)
Access control is essentially about deciding whether to grant access to a re-
source or deny it. Sounds easy. No? Well it turns out that things are not as
simple as they seem at first glance. Let us first look as a case-study at how ac-
cess control is organised in Unix-like systems (Windows systems have similar
access controls, although the details might be quite different).

Unix-Style Access Control

Following the Unix-philosophy that everything is considered as a file, even
memory, ports and so on, access control in Unix is organised around 11 Bits
that specify how a file can be accessed. These Bits are sometimes called the
permission aĴributes of a file. There are typically three modes for access: read,
write and execute. Moreover there are three user groups to which the modes
apply: the owner of the file, the group the file is associated with and everybody
else. A typical example of some files with permission aĴributes is as follows:

1 $ ls -ld . * */*
2 drwxr-xr-x ping staff 32768 Apr 2 2010 .
3 -rw----r-- ping students 31359 Jul 24 2011 manual.txt
4 -r--rw--w- bob students 4359 Jul 24 2011 report.txt
5 -rwsr--r-x bob students 141359 Jun 1 2013 microedit
6 dr--r-xr-x bob staff 32768 Jul 23 2011 src
7 -rw-r--r-- bob staff 81359 Feb 28 2012 src/code.c
8 -r--rw---- emma students 959 Jan 23 2012 src/code.h

The leading d in Lines 2 and 6 indicate that the file is a directory, whereby
in the Unix-tradition the . points to the directory itself. The .. points at the
directory “above”, or parent directory. The second to fourth leĴer specify how
the owner of the file can access the file. For example Line 3 states that ping
can read and write the manual.txt, but cannot execute it. The next three leĴers
specify how the group members of the file can access the file. In Line 4, for
example, all students can read and write the file report.txt. Finally the last
three leĴers specify how everybody else can access a file. This should all be
relatively familiar and straightforward. No?

There are already some special rules for directories. If the execute aĴribute
of a directory is not set, then one cannot change into the directory and one can-
not access any file inside it. If the write aĴribute is not set, then one can change
existing files (provide they are changeable), but one cannot create new files. If
the read aĴribute is not set, one cannot search inside the directory (ls -la does
not work) but one can access an existing file, provided one knows its name.

While the above might sound moderately complicated, the real complica-
tions with Unix-style file permissions involve the setuid and setgid aĴributes.
For example the file microedit in Line 5 has the setuid aĴribute set (indicated
by the s in place of the usual x). The purpose of setuid and setgid is to solve the
following puzzle: The program passwd allows users to change their passwords.

1



Therefore passwd needs to have write access to the file /etc/passwd. But this
file cannot be writable for every user, otherwise anyone can set anyone else’s
password. So changing securely passwords cannot be achieved with the sim-
ple Unix access rights discussed so far. While this situation might look like an
anomaly, it is in fact an often occurring problem. For example looking at cur-
rent active processes with /bin/ps requires access to internal data structures of
the operating system. In fact any of the following actions cannot be configured
for single users, but need privileged root access

• changing system databases (users, groups, routing tables and so on)

• opening a network port below 1024

• interacting with peripheral hardware, such as printers, harddisk etc

• overwriting operating system facilities, like process scheduling andmem-
ory management

This will typically involve quite a lot of programs on a Unix system. I counted
95 programs with the setuid aĴribute set on my bog-standard MacOSX system
(including the program /usr/bin/login). The problem is that if there is a secu-
rity problem with one of them, then malicious users (or outside aĴackers) can
gain root access.

Themain rule for files that have the setuid aĴribute set is that when running
such files they will run not with the callers access rights, but with the owner of
the files rights. So /usr/bin/login will always be running with root access
rights, no maĴer who invokes this program.

Secrecy and Integrity

Further Information

If you want to know more about the intricacies of the “simple” Unix access
control system you might find the relatively readable paper about “Setuid De-
mystified” useful.

http://www.cs.umd.edu/~jkatz/TEACHING/comp_sec_F04/downloads/setuid.pdf

2

http://www.cs.umd.edu/~jkatz/TEACHING/comp_sec_F04/downloads/setuid.pdf

