
Security Engineering (8)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

SEN 08, King’s College London – p. 1/1



LastWeek’s Survey
About Bitcoins:

SEN 08, King’s College London – p. 2/1

bitcoins
cannot get
lost, all
transactions
are recorded

not regulated by any
government

untracable spending
of money?

fixed amount of bitcoins in
circulation (no inflation)

Should one mine for Bitcoins?

bitcoins are
anonymous



Bitcoins from 10,000m
a crypto “currency” by Satoshi Nakamoto (likely a
pen name)
a digital resource designed to be scarce (max 21
Mio bitcoins—deflationary currency)
mined by solving special puzzles involving hashes
transaction history (ledger/blockchain) is P2P
distributed (12 GB)
three “mining pools” produce
currently more than 50% of bitcoins
can be stolen and also lost
anonymous?

surely a scam/ponzi scheme!

SEN 08, King’s College London – p. 3/1



Bitcoins from 10,000m
a crypto “currency” by Satoshi Nakamoto (likely a
pen name)
a digital resource designed to be scarce (max 21
Mio bitcoins—deflationary currency)
mined by solving special puzzles involving hashes
transaction history (ledger/blockchain) is P2P
distributed (12 GB)
three “mining pools” produce
currently more than 50% of bitcoins
can be stolen and also lost
anonymous?
surely a scam/ponzi scheme!

SEN 08, King’s College London – p. 3/1



Bitcoins
you create a public-private key pair
you have a ‘wallet’ which can be

electronic (on your computer, passwords)
cloud-based (passwords)
paper-based

and contains only the public-private key
Bitcoins can be stolen or lost
Mt. Gox: hacked⇒ insolvent
no form of dispute resolution
(against current consumer laws)

SEN 08, King’s College London – p. 4/1



Underlying Ideas
It establishing trust in a completely untrusted
environment

public-private key encryption

digital signatures

cryptographic hashing (SHA-256)

If Alice sends you: msg, {msg}Kpriv
Alice

…?

SEN 08, King’s College London – p. 5/1



Lets Start with “Infocoins”

{I, Alice, am giving Bob one infocoin.}Kpriv
Alice

no-one else could have created that message
Alice cannot deny the “intend” of sending Bob
money

Q: What is money?
A: Well a string like above (or later messages like
that)

SEN 08, King’s College London – p. 6/1



Lets Start with “Infocoins”

{I, Alice, am giving Bob one infocoin.}Kpriv
Alice

no-one else could have created that message
Alice cannot deny the “intend” of sending Bob
money

Q: What is money?
A: Well a string like above (or later messages like
that)

SEN 08, King’s College London – p. 6/1



Double Spend
{I, Alice, am giving Bob one infocoin.}Kpriv

Alice

Alice could keep sending Bob this message over
and over again (did she mean to send 10 ICs?)

we need to have a serial number
{I, Alice, am giving Bob infocoin #1234567.}Kpriv

Alice

but then we need a trusted source of serial
numbers (e.g. a bank)

SEN 08, King’s College London – p. 7/1



Double Spend
{I, Alice, am giving Bob one infocoin.}Kpriv

Alice

Alice could keep sending Bob this message over
and over again (did she mean to send 10 ICs?)

we need to have a serial number
{I, Alice, am giving Bob infocoin #1234567.}Kpriv

Alice

but then we need a trusted source of serial
numbers (e.g. a bank)

SEN 08, King’s College London – p. 7/1



Double Spend
{I, Alice, am giving Bob one infocoin.}Kpriv

Alice

Alice could keep sending Bob this message over
and over again (did she mean to send 10 ICs?)

we need to have a serial number
{I, Alice, am giving Bob infocoin #1234567.}Kpriv

Alice

but then we need a trusted source of serial
numbers (e.g. a bank)

SEN 08, King’s College London – p. 7/1



NoBanks Please
With banks we could implement:

Bob asks the bank whether the infocoin with that
serial number belongs to Alice and
Alice hasn’t already spent this infocoin.

If yes, then Bob tells the bank he accepts the
infocoin.
The bank updates the records (ledger) to show
that the infocoin with that serial number is now
in Bob’s possession and no longer belongs to
Alice.

SEN 08, King’s College London – p. 8/1



Blockchain (Public Ledger)
The solution for double spend:
make everybody the bank, everybody has the
entire transaction history — will be called
blockchain
Bob checks whether the infocoin belongs to Alice
and then broadcasts the message to everybody
else

SEN 08, King’s College London – p. 9/1



Blockchain (Public Ledger)

each block is hashed and contains a reference to
the earlier block; “validates” potentially more
than one transaction

SEN 08, King’s College London – p. 10/1



TransactionGraph
older current

SEN 08, King’s College London – p. 11/1



Double SpendAgain
I , Alice, am giving Bob one infocoin, with
serial number 1234567.
I, Alice, am giving Charlie one infocoin
with number 1234567.

How should other people update their blockchain
(public register)?

SEN 08, King’s College London – p. 12/1



Double SpendAgain
I , Alice, am giving Bob one infocoin, with
serial number 1234567.
I, Alice, am giving Alice one infocoin with
number 1234567.

How should other people update their blockchain
(public register)?

SEN 08, King’s College London – p. 12/1



Creating Agreement
Once enough people have broadcast that
message, everyone updates their block chain
to show that infocoin 1234567 now belongs to
Bob, and the transaction is accepted.

But what if Alice sets up a large number of separate
identities, let’s say a billion, on the Infocoin network. When
Bob asks the network to validate the transaction, Alice’s
puppet identities say “Yes his transaction is validated”, while
actually the rest network says Alice’s transaction is OK?

SEN 08, King’s College London – p. 13/1



Creating Agreement
Once enough people have broadcast that
message, everyone updates their block chain
to show that infocoin 1234567 now belongs to
Bob, and the transaction is accepted.

But what if Alice sets up a large number of separate
identities, let’s say a billion, on the Infocoin network. When
Bob asks the network to validate the transaction, Alice’s
puppet identities say “Yes his transaction is validated”, while
actually the rest network says Alice’s transaction is OK?

SEN 08, King’s College London – p. 13/1



!! Proof-of-Work !!
The idea is counterintuitive and involves a
combination of two ideas:

to (artificially) make it computationally
costly for network users to validate
transactions, and
to reward them for trying to help validate
transactions

this is called mining: whoever validates a transaction will be
awarded with 50 bitcoins — this halves every 210,000
transactions or roughly every 4 years (currently 25 BC); no
new bitcoins after 2140 – then only transaction fees

SEN 08, King’s College London – p. 14/1



!! Proof-of-Work !!
The idea is counterintuitive and involves a
combination of two ideas:

to (artificially) make it computationally
costly for network users to validate
transactions, and
to reward them for trying to help validate
transactions

this is called mining: whoever validates a transaction will be
awarded with 50 bitcoins — this halves every 210,000
transactions or roughly every 4 years (currently 25 BC); no
new bitcoins after 2140 – then only transaction fees

SEN 08, King’s College London – p. 14/1



Solving Puzzles
Given a string, say ”Hello, world!”, what is the
salt so the hash starts with a long run of zeros?

h(”Hello, world!0”) =
1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64

h(”Hello, world!1”) =
e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a9332a7d8
…
h(”Hello, world!4250”) =
0000c3af42fc31103f1fdc0151fa747ff87349a4714df7cc52ea464e12dcd4e9

SEN 08, King’s College London – p. 15/1



Solving Puzzles
Given a string, say ”Hello, world!”, what is the
salt so the hash starts with a long run of zeros?

h(”Hello, world!0”) =
1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64
h(”Hello, world!1”) =
e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a9332a7d8

…
h(”Hello, world!4250”) =
0000c3af42fc31103f1fdc0151fa747ff87349a4714df7cc52ea464e12dcd4e9

SEN 08, King’s College London – p. 15/1



Solving Puzzles
Given a string, say ”Hello, world!”, what is the
salt so the hash starts with a long run of zeros?

h(”Hello, world!0”) =
1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64
h(”Hello, world!1”) =
e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a9332a7d8
…
h(”Hello, world!4250”) =
0000c3af42fc31103f1fdc0151fa747ff87349a4714df7cc52ea464e12dcd4e9

SEN 08, King’s College London – p. 15/1


