Access Control and Privacy Policies (6)

Email: christian.urban at kcl.ac.uk Office: S_{1.27} (1st floor Strand Building) Slides: KEATS (also homework is there)

APP 06, King's College London, 12 November 2013 – p. 1/42

Access Control Logic

Formulas

 F ::= true *|* false *|* F *∧* F *|* F *∨* F *|* F *⇒* F $| p(t_1,...,t_n)$

| P says F "saying predicate"

Judgements

Γ *⊢* F

APP 06, King's College London, 12 November 2013 – p. 2/42

. Γ *⊢ F*

APP 06, King's College London, 12 November 2013 – p. 3/42

Judgements

APP 06, King's College London, 12 November 2013 – p. 3/42

APP 06, King's College London, 12 November 2013 – p. 4/42

P says $F \vdash Q$ says $F \land P$ says G

APP 06, King's College London, 12 November 2013 – p. 4/42

APP 06, King's College London, 12 November 2013 – p. 4/42

Alice sends a message *m* Alice says *m*

- Alice sends a message *m* Alice says *m*
- Alice sends an encrypted message *m* (with key *K*)

Alice says $\{m\}_K$

APP 06, King's College London, 12 November 2013 – p. 5/42

- Alice sends a message *m* Alice says *m*
- Alice sends an encrypted message *m* (with key *K*)

Alice says ${m}_{K}$

• Decryption of Alice's message $\Gamma \vdash$ Alice says $\{m\}_K$ $\Gamma \vdash$ Alice says *K* Γ *⊢* Alice says *m*

$$
\frac{\Gamma \vdash F_1 \Rightarrow F_2 \quad \Gamma \vdash F_1}{\Gamma \vdash F_2} \qquad \frac{F_1, \Gamma \vdash F_2}{\Gamma \vdash F_1 \Rightarrow F_2}
$$
\n
$$
\frac{\Gamma \vdash F}{\Gamma \vdash P \text{ says } F}
$$
\n
$$
\frac{\Gamma \vdash F}{\Gamma \vdash P \text{ says } F}
$$
\n
$$
\frac{\Gamma \vdash P \text{ says } F}{\Gamma \vdash P \text{ says } F_2}
$$

APP 06, King's College London, 12 November 2013 – p. 6/42

Proofs

APP 06, King's College London, 12 November 2013 – p. 7/42

APP 06, King's College London, 12 November 2013 – p. 8/42

Proofs

⊢ axiom

> *⊢ ⊢*

⊢ ⊢ ⊢

APP 06, King's College London, 12 November 2013 – p. 9/42

Sudoku

- **Row-Column:** each cell, must contain exactly one number
- **Row-Number:** each row must contain each number exactly once
- ³. **Column-Number:** each column must contain each number exactly once
- **Box-Number:** each box must contain each number exactly once

APP 06, King's College London, 12 November 2013 – p. 10/42

single position rules

*{*1*..*9*} − {*4*}* in one row in empty position

single position rules

*{*1*..*9*} − {*4*}* in one row 4 in empty position

*{*1*..*9*} − {x}* in one column *x* in empty position *{*1*..*9*} − {x}* in one box *x* in empty position

APP 06, King's College London, 12 November 2013 – p. 11/42

candidate rules

$$
\frac{X - \{x\} \text{ in one box} \quad X \subseteq \{1..9\}}{x \text{ candidate in empty positions}}
$$

$$
\frac{\{1..9\} - \{4\} \text{ in one row}}{4 \text{ in empty position}}
$$
\n
$$
\frac{X - \{2\} \text{ in one box}}{2 \text{ candidate in empty positions}}
$$

APP 06, King's College London, 12 November 2013 – p. 13/42

*{*1*..*9*} − {*4*}* in one row in empty position *X − {*2*}* in one box *X ⊆ {*1*..*9*}* candidate in empty positions

APP 06, King's College London, 12 November 2013 – p. 13/42

$$
X - \{2\} \text{ in one box } X \subseteq \{1..9\}
$$

2 candidate

APP 06, King's College London, 12 November 2013 – p. 14/42

Are there sudokus that cannot be solved?

APP 06, King's College London, 12 November 2013 – p. 15/42

Are there sudokus that cannot be solved?

Sometimes no rules apply at all....unsolvable sudoku.

APP 06, King's College London, 12 November 2013 – p. 15/42

Example Proof

γ *P* says $F_1 \wedge Q$ says F_2 *⊢ Q* says $F_2 \wedge P$ says F_1

APP 06, King's College London, 12 November 2013 – p. 16/42

Example Proof

We have (by axiom)

(1) *P* says $F_1 \wedge Q$ says $F_2 \vdash P$ says $F_1 \wedge Q$ says F_2

From (1) we get

(2) *P* says $F_1 \wedge Q$ says $F_2 \vdash P$ says F_1 (3) *P* says $F_1 \wedge Q$ says $F_2 \vdash Q$ says F_2

From (3) and (2) we get

P says $F_1 \wedge Q$ says $F_2 \vdash Q$ says $F_2 \wedge P$ says F_1

Done.

Other Direction

We want to prove

P says $F_1 \wedge Q$ says $F_2 \vdash Q$ says $F_2 \wedge P$ says F_1

We are better be able to prove:

(1) *P* says $F_1 \wedge Q$ says $F_2 \vdash P$ says F_1 (2) *P* says $F_1 \wedge Q$ says $F_2 \vdash Q$ says F_2

For (1): If we can prove

P says $F_1 \wedge Q$ says $F_2 \vdash Q$ says $F_2 \wedge P$ says F_1

then (1) is fine. Similarly for (2).

APP 06, King's College London, 12 November 2013 – p. 18/42

Recall the following scenario:

- If Admin says that file should be deleted, then this file must be deleted.
- Admin trusts Bob to decide whether file should be deleted.
- Bob wants to delete file.

(Admin says del_file) *⇒* del_file,

- Γ = (Admin says ((Bob says del_file) *⇒* del_file)), Bob says del_file
- Γ *⊢* del_file

How to prove $\Gamma \vdash F$?

$\Gamma, F \vdash F$

APP 06, King's College London, 12 November 2013 – p. 20/42

$\bm{F}_1, \Gamma \vdash \bm{F}_2$ $\Gamma \vdash \textbf{\textit{F}}_1 \Rightarrow \textbf{\textit{F}}_2$

APP 06, King's College London, 12 November 2013 – p. 21/42

Γ *⊢ F* Γ *⊢ P* says *F*

APP 06, King's College London, 12 November 2013 – p. 22/42

$$
\frac{\Gamma \vdash \boldsymbol{F}_1}{\Gamma \vdash \boldsymbol{F}_1 \vee \boldsymbol{F}_2} \qquad \frac{\Gamma \vdash \boldsymbol{F}_2}{\Gamma \vdash \boldsymbol{F}_1 \vee \boldsymbol{F}_2}
$$

APP 06, King's College London, 12 November 2013 – p. 23/42

Γ *⊢ F*¹ Γ *⊢ F*² $\Gamma \vdash \textbf{\textit{F}}_1 \land \textbf{\textit{F}}_2$

APP 06, King's College London, 12 November 2013 – p. 24/42

I want to prove Γ *⊢* Pred

I want to prove Γ *⊢* Pred

1. I found that Γ contains the assumption $F_1 \Rightarrow F_2$

I want to prove Γ *⊢* Pred

1. I found that Γ contains the assumption $F_1 \Rightarrow F_2$

2. If I can prove $\Gamma \vdash F_1$,

I want to prove Γ *⊢* Pred

1. I found that Γ contains the assumption $F_1 \Rightarrow F_2$

2. If I can prove $\Gamma \vdash F_1$, then I can prove $\Gamma \vdash F_2$

$$
\frac{\Gamma \vdash F_1 \Rightarrow F_2 \quad \Gamma \vdash F_1}{\Gamma \vdash F_2}
$$

APP 06, King's College London, 12 November 2013 – p. 25/42

I want to prove Γ *⊢* Pred

- **1.** I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- **2.** If I can prove $\Gamma \vdash F_1$, then I can prove $\Gamma \vdash F_2$
- So better I try to prove Γ *⊢* Pred with the additional assumption \mathbf{F}_2 .

 $F_2, \Gamma \vdash \text{Pred}$

APP 06, King's College London, 12 November 2013 – p. 25/42

- *P* is entitled to do *F* P controls $F \stackrel{\text{def}}{=} (P \text{ says } F) \Rightarrow F$ $\Gamma \vdash P$ controls $F \quad \Gamma \vdash P$ says F Γ *⊢ F*
- *P* speaks for *Q* $P \mapsto Q \stackrel{\text{def}}{=} \forall F. (P \text{ says } F) \Rightarrow (Q \text{ says } F)$ $\Gamma \vdash P \mapsto Q \quad \Gamma \vdash P$ says F $\overline{\Gamma \vdash Q}$ says F $\Gamma \vdash P \mapsto Q \quad \Gamma \vdash Q$ controls F Γ *⊢ P* controls *F*

Protocol Specifications

The Needham-Schroeder Protocol:

 $Message I \rightarrow S : A, B, N_A$ M essage 2 $S \to A : \{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_{BS}}\}_{K_{AS}}$ M essage 3 $A \rightarrow B$: ${K_{AB}, A}_{K_{BS}}$ M essage 4 $B \rightarrow A : \{N_B\}_{K_{AB}}$ M essage 5 $A \to B$: $\{N_B - 1\}$ _{*KAB*}

Trusted Third Party

Simple protocol for establishing a secure connection via a mutually trusted 3rd party (server):

Message I $A \rightarrow S : A, B$ M essage 2 $S \to A : {K_{AB}}_{K_{AS}}$ and ${K_{AB}}_{K_{BS}}$ ${K_{AS}}$ M essage 3 $A \rightarrow B$: ${K_{AB}}_{K_{BS}}$ M essage 4 $A \rightarrow B : \{m\}_{K_{AB}}$

Alice sends a message *m* Alice says *m*

- Alice sends a message *m* Alice says *m*
- Alice sends an encrypted message *m* (with key *K*)

Alice says $\{m\}_K$

- Alice sends a message *m* Alice says *m*
- Alice sends an encrypted message *m* (with key *K*)

Alice says ${m}_{K}$

• Decryption of Alice's message $\Gamma \vdash$ Alice says $\{m\}_K$ $\Gamma \vdash$ Alice says *K* Γ *⊢* Alice says *m*

• Encryption of a message Γ *⊢* Alice says *m* Γ *⊢* Alice says *K* $Γ ⊢ Alice says {m}_K$

APP 06, King's College London, 12 November 2013 – p. 30/42

Public/Private Keys

Bob has a private and public key: $K^{pub}_{Bob}, K^{priv}_{Bob}$ *Bob*

> Γ *⊢* Alice says $\{m\}_{K_{Bob}^{pub}}$ Γ *⊦* K_{Bob}^{priv} *Bob* Γ *⊢* Alice says *m*

Public/Private Keys

Bob has a private and public key: $K^{pub}_{Bob}, K^{priv}_{Bob}$ *Bob*

> Γ *⊢* Alice says $\{m\}_{K_{Bob}^{pub}}$ Γ *⊦* K_{Bob}^{priv} *Bob* Γ *⊢* Alice says *m*

this is **not** a derived rule!

APP 06, King's College London, 12 November 2013 – p. 31/42

Trusted Third Party

- Alice calls Sam for a key to communicate with Bob
- Sam responds with a key that Alice can read and a key Bob can read (pre-shared)
- Alice sends the message encrypted with the key and the second key it recieved

A sends *S* : *Connect*(*A, B*) S sends A : $\{K_{AB}\}_{K_{AS}}$ and $\{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}}$ \widehat{A} sends \widehat{B} : $\{K_{AB}\}_{K_{BS}}$ \overline{A} sends \overline{B} : $\{m\}_{K,\overline{B}}$

Controls

- P controls F *≡* (P says F) *⇒* F
- \bullet its meaning "P is entitled to do F"
- if P controls F and P says F then F

Controls

- P controls F *≡* (P says F) *⇒* F
- \bullet its meaning "P is entitled to do F"
- if P controls F and P says F then F

$$
\frac{\Gamma \vdash P \text{ controls } F \quad \Gamma \vdash P \text{ says } F}{\Gamma \vdash F}
$$

Controls

- P controls F *≡* (P says F) *⇒* F
- \bullet its meaning "P is entitled to do F"
- if P controls F and P says F then F

$$
\frac{\Gamma \vdash P \text{ controls } F \quad \Gamma \vdash P \text{ says } F}{\Gamma \vdash F}
$$

$$
\frac{\Gamma \vdash (P \text{ says } F) \Rightarrow F \quad \Gamma \vdash P \text{ says } F}{\Gamma \vdash F}
$$

Security Levels

- Top secret (*TS*)
- Secret (*S*)
- \bullet Public (P)

$slev(P) < slev(S) < slev(TS)$

APP 06, King's College London, 12 November 2013 – p. 34/42

Security Levels

- Top secret (*TS*)
- Secret (*S*)
- Public (*P*)

$slev(P) < slev(S) < slev(TS)$

- Bob has a clearance for "secret"
- Bob can read documents that are public or sectret, but not top secret

Bob controls Permitted (File, read) Bob says Permitted (File, read) Permitted (File, read)

APP 06, King's College London, 12 November 2013 – p. 35/42

Reading a File

$slev$ (File) \lt $slev$ (Bob) \Rightarrow Bob controls Permitted (File, read) Bob says Permitted (File, read) $slev$ (File) \lt $slev$ (Bob) Permitted (File, read)

APP 06, King's College London, 12 November 2013 – p. 35/42

Reading a File

 $slev$ (File) \lt $slev$ (Bob) \Rightarrow Bob controls Permitted (File, read) Bob says Permitted (File, read) $slev$ (File) = P $slev(\text{Bob}) = S$ $slev(P) < slev(S)$ Permitted (File, read)

Substitution Rule

$$
\frac{\Gamma\vdash\textit{slev}(P)=l_1\quad \Gamma\vdash\textit{slev}(Q)=l_2\quad \Gamma\vdash l_1
$$

Substitution Rule

$$
\frac{\Gamma\vdash \mathit{slev}(P) = l_1\quad \Gamma\vdash \mathit{slev}(Q) = l_2\quad \Gamma\vdash l_1 < l_2}{\Gamma\vdash \mathit{slev}(P) < \mathit{slev}(Q)}
$$

- \circ $slev(\text{Bob}) = S$
- \bullet *slev*(File) = *P*
- $\mathbf{o} \ \textit{slev}(P) < \textit{slev}(S)$

APP 06, King's College London, 12 November 2013 – p. 36/42

Reading a File

```
slev(File) \lt slev(Bob) \RightarrowBob controls Permitted (File, read)
Bob says Permitted (File, read)
slev(File) = Pslev(\text{Bob}) = TS\mathcal{P}
```
Permitted (File, read)

Reading a File

 $slev$ (File) \lt $slev$ (Bob) \Rightarrow Bob controls Permitted (File, read) Bob says Permitted (File, read) $slev$ (File) = P $slev(\text{Bob}) = TS$ $slev(P) < slev(S)$ $slev(S) < slev(TS)$

Permitted (File, read)

Transitivity Rule

$\Gamma \vdash l_1 < l_2 \quad \Gamma \vdash l_2 < l_3$ $\Gamma\vdash \pmb{l}_1<\pmb{l}_3$

- $\mathbf{o} \ \textit{slev}(P) < \textit{slev}(S)$
- $\mathbf{o} \ \textit{slev}(S) < \textit{slev}(TS)$

 $slev(P) < slev(TS)$

APP 06, King's College London, 12 November 2013 – p. 38/42

• Access policy for reading

∀f. slev(*f*) *< slev*(Bob) *⇒* Bob controls Permitted (*f*, read) Bob says Permitted (File, read) $slev$ (File) = P $slev(\text{Bob}) = TS$ $slev(P) < slev(S)$ $slev(S) < slev(TS)$ Permitted (File, read)

• Access policy for reading

∀f. slev(*f*) *≤ slev*(Bob) *⇒* Bob controls Permitted (*f*, read) Bob says Permitted (File, read) $slev$ (File) = TS $slev(\text{Bob}) = TS$ $slev(P) < slev(S)$ $slev(S) < slev(TS)$ Permitted (File, read)

• Access policy for writing

∀f. slev(Bob) *≤ slev*(*f*) *⇒* Bob controls Permitted (*f*, write) Bob says Permitted (File, write) $slev$ (File) = TS $slev(\text{Bob}) = S$ $slev(P) < slev(S)$ $slev(S) < slev(TS)$ Permitted (File, write)

Sending Rule

$\Gamma \vdash P$ *says* $F \quad \Gamma \vdash P$ *sends* $Q : F$ Γ *⊢ Q says F*

APP 06, King's College London, 12 November 2013 – p. 41/42

Sending Rule

$$
\frac{\Gamma \vdash P \text{ says } F \quad \Gamma \vdash P \text{ sends } Q : F}{\Gamma \vdash Q \text{ says } F}
$$

$$
\begin{array}{c}\n\mathbf{P} \operatorname{sends} \mathbf{Q} : \mathbf{F} \stackrel{\text{def}}{=} \\
(\mathbf{P} \operatorname{says} \mathbf{F}) \Rightarrow (\mathbf{Q} \operatorname{says} \mathbf{F})\n\end{array}
$$

APP 06, King's College London, 12 November 2013 – p. 41/42

Trusted Third Party

A sends *S* : *Connect*(*A, B*) S says (*Connect*(A, B) ⇒ $\{K_{AB}\}_{K_{AS}} \wedge \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}}\}$ S sends $A: {K_{AB}}_{K_{AS}} \wedge {K_{AB}}_{K_{BS}}$ A sends B : ${K_{AB}}_{K_{BS}}$ *A* sends $B: \{m\}_{K,\mu}$

Trusted Third Party

A sends *S* : *Connect*(*A, B*) S says (*Connect*(A, B) ⇒ $\{K_{AB}\}_{K_{AS}} \wedge \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}}\}$ S sends $A: {K_{AB}}_{K_{AS}} \wedge {K_{AB}}_{K_{BS}}$ A sends B : ${K_{AB}}_{K_{BS}}$ *A* sends $B: \{m\}_{K,\mu}$

 $\Gamma \vdash B$ says *m*?

APP 06, King's College London, 12 November 2013 – p. 42/42