
Handout 5 (Protocols)
Protocols are the computer science equivalent to fractals and the Mandelbrot
set in mathematics. With the laĴer you have a simple formula which you just
iterate and then you test whether a point is inside or outside a region, and
voila something magically happened.1 Protocols are similar: they are simple
exchanges of messages, but in the end something “magical” can happen—for
example a secret channel has been established or two entities have authenti-
cated themselves to each other. The problemwithmagic is of course it is poorly
understood and even experts often got, and get, it wrong with protocols.

To have an idea what kind of protocols we are interested, let us look at a
few examples. One example are (wireless) key fobs which operate the central
locking system and the ignition in a car.

The point of these key fobs is that everything is done over the “air”—there is
no physical connection between the key, doors and engine. So wemust achieve
security by exchanging certain messages between the key fob on one side and
doors and engine on the other. Clearly what we like to achieve is that I can
get into my car and start it, but that thieves are kept out. The problem is that
everybody can “overhear” or skim the exchange of messages between the key
fob and car. In this scenario the simplest aĴack you need to defend against is a
person-in-the-middle aĴack. Imagine you park your car in front of a supermar-
ket. One thief follows you with a strong transmiĴer. A second thief “listens” to
the signal from the car and wirelessly transmits it to the “colleague” who fol-
lowed you and who silently enquires about the answer from the key fob. The
answer is then send back to the thief at the car, which then dutifully opens and
possibly starts. No need to steal your key anymore.

But there are many more such protocols we like to consider. Other exam-
ples are wifi—you might sit at a Starbucks and talk wirelessly to the free ac-
cess point there and from there talk with your bank, for example. Also even
if your have to touch your Oyster card at the reader each time you enter and
exit the Tube, it actually operates wirelessly and with appropriate equipment
over some quite large distance. But there are many many more examples (Bit-
coins, mobile phones,…). The common characteristics of the protocols we are
interested in here is that an adversary or aĴacker is assumed to be in complete
control over the network or channel over which you exchanging messages. An
aĴacker can install a packet sniffer on a network, inject packets, modify packets,

1http://en.wikipedia.org/wiki/Fractal, http://en.wikipedia.org/wiki/Mandelbrot_
set

1

http://en.wikipedia.org/wiki/Fractal
http://en.wikipedia.org/wiki/Mandelbrot_set
http://en.wikipedia.org/wiki/Mandelbrot_set

replay old messages, or fake preĴy much everything. In this hostile environ-
ment, the purpose of protocols (that is exchange ofmessages) is to achieve some
security goal, for example only allow the owner of the car in but everybody else
should be kept out.

The protocols we are interested here are generic descriptions of how to ex-
change messages in order to achieve a goal, be it establishing a mutual secure
connection or being able to authenticate to a system. Unlike the distant past
where for example we had to meet a person in order to authenticate him or
her (via a passport for example), the problem we are facing on the Internet is
that we cannot easily be sure who we are “talking” to. The obvious reason is
that only some electrons arrive at our computer; we do not see the person, or
computer, behind the incoming electrons (messages).

To start, let us look at one of the simplest protocols that are part of the TCP
protocol (which underlies the Internet). This protocol does not do anything se-
curity relevant, it just establishes a “hello” from a client to a server which the
server answers with “I heard you” and the client answers in turn with some-
thing like “thanks”. This protocol is often called a three-way handshake. Graph-
ically it can be illustrated as follows

On the left-hand side is a client, sayAlice, on the right-hand side is a server, say.
Time is running from top to boĴom. Alice initial SYNmessage needs some time
to travel to the server. The server answers with SYN-ACK, which will require
some time to arrive at Alice. Her answer ACK will again take some time to
arrive at the server. After the messages are exchanged Alice and the server
simply have established a channel to communicate over. Alice does not know
whether she is really talking to the server (somebody else on the networkmight
have intercepted her message and replied in place of the server). Similarly, the
server has no idea who it is talking to. That this can be established depends on
what is exchanged next and is the point of the protocols we want to study in
more detail.

Beforewe start in earnest, we need to fix amore convenient notation for pro-
tocols. Drawing pictures like the one abovewould be awkward in the long-run.
The notation already abstracts away from a few details we are not interested in:
for example the time the messages need to travel between endpoints. What we
are interested in is in which order the messages are sent. For the SYN-ACK
protocol we will therefore use the notation

2

A → S : SYN
S → A : SYN_ACK
A → S : ACK

(1)

The left-hand side specifies who is the sender and who is the receiver of the
message. On the right of the colon is the message that is send. The order from
top to down specifies in which order the messages are sent. We also have the
convention that messages like above SYN are send in clear-text over the net-
work. If we want that a message is encrypted, then we use the notation

{msg}KAB

for messages. The curly braces indicate a kind of envelope which can only be
opened if you know the key KAB with which the message has been encrypted.
We always assume that an aĴacker, say Eve, cannot get the content of the mes-
sage, unless she is also in the possession of the key. We explicitly exclude in our
study that the encryption can be broken.2 It is also possible that an encrypted
message contains several parts. In this case we would write something like

{msg1, msg2}KAB

But again Eve would not be able to know this unless she also has the key. We
also allow the possibility that amessage is encrypted twice under different keys.
In this case we write

{{msg}KAB}KBC

The idea is that even if aĴacker Eve has the key KBC she could decrypt the
outer envelop, but still do not get to the message, because it is still encrypted
with the key KAB. Note, however, while an aĴacker cannot obtain the content
of the message without the key, encrypted messages can be observed and be
recorded and then replayed at another time, or send to another person!

Another very important point is that the notation for protocols such as shown
in (1) is a schema how the protocol should proceed. It could be instantiated by
an actual protocol run between Alice, say, and the server Calcium at King’s. In
this case the specific instance would look like

Alice → Calcium : SYN
Calcium → Alice : SYN_ACK
Alice → Calcium : ACK

But a server like Calcium of course needs to serve many clients. So there could
be the same protocol also running with Bob, say

2…which of course is what a good protocol designer needs to ensure and more often than not
protocols are broken. For example Oyster cards contain a very weak encryption mechanismwhich
has been aĴacked.

3

Bob → Calcium : SYN
Calcium → Bob : SYN_ACK
Bob → Calcium : ACK

And these two instances of the protocol could be running in parallel or be at
different stages. So the protocol schema shown in (1) can be thought of how
two programs need to run on the side of A and S in order to successfully com-
plete the protocol. But it is really just a blue print how the communication is
supposed to proceed.

This is actually already a way how such protocols can fail. Although very
simple the SYN_ACK protocol can cause headaches for system administra-
tors where an aĴacker starts the protocol, but does not complete it. This looks
graphically like

The aĴacker sends lots of SYN requests which the server dutifully answers,
but needs to keep track of such protocol exchanges. So every time a liĴle bit
of memory resource will be eaten away on the server side until all resources
are exhausted and when Alice tries to contact the server then the server is over-
whelmed and does not respond anymore. This kind of aĴack are called SYN
floods.3

After reading four pages, you might be wondering where the magic is. For
this let us take a closer look at authentication protocols.

Authentication Protocols

The simplest authentication protocol between principals A and B, say is

A → B : KAB

It can be sought of as A sends a common secret to B like a password. The idea
is that if only A and B know the key KAB then this should be sufficient for B
to infer it is talking to A. But this is of course too naive, if the message can be
observed by everybody else on the network. Eve could just record this message
A just send, and next time send the same message to B and B would believe it

3http://en.wikipedia.org/wiki/SYN_flood

4

http://en.wikipedia.org/wiki/SYN_flood

talked to A. But actually it talked to Eve which now clears out As back account
if B had been a bank.

A more sophisticated protocol which tries to avoid the replay aĴack is as
follows

A → B : HELLO
B → A : N
A → B : {N}KAB

With this protocol the idea is that A first sends a message to B saying “I want
to talk to you”. B sends then a challenge in form of a random number N. In
protocols such random numbers are often called nonce. What is the purpose
of this nonce? Well, if an aĴacker records A answer, it will not make sense to
replay this message, because next time this protocol is run the nonce B sends
will be different. So if we run this protocol, what can B infer: it has send out
an (unpredictable) nonce to A and received this challenge back, but encoded
under the key KAB. If B assumes only A and B know the key KAB and the
nonce is unpredictable, then B is able to infer it must be talking to A. Of course
the implicit assumption on this inference are that nobody else knows about the
key KAB and nobody else can decrypt the message. B of course can decrypt
the answer from A and check whether the answer corresponds to the challenge
(nonce) B has send earlier.

But what about A? Can A make any assumptions about who it talks to? It
dutifully answered the challenge and hopes its bank, say, will be the only one to
understand her answer. But is this the case? No! Lets consider an aĴacker Eve
who has control over the network. She could have intercepted the message
HELLO and just replied herself to A using a random number… for example
one which she observed in a previous run of this protocol. Remember that if
a message is send without curly braces it is sent in clear text. Then A would
encrypt the nonce with the key KAB and send it back to Eve. She just throws
the answer away. A would hope that she talked to B because she followed the
protocol, but unfortunately she cannot be sure who she is talking to.

The solution is to follow a mutual challenge-response protocol. There A al-
ready starts off with a challenge (nonce) on her own.

A → B : NA
B → A : {NA, NB}KAB
A → B : NB

As seen, B receives this nonce, NA, adds his own nonce, NB and encrypts it with
the key KAB. A receives this message, is able to decrypt it since we assume she
has the key KAB, and sends back the nonce of B. Let us analyse which assump-
tions A and B can make after the protocol has run. B received a challenge and
answered correctly to A (in the encryptedmessage). An aĴacker would just not
be able to answer this challenge correctly because the aĴacker is assumed to not
be in the possession of the key KAB; so could not have formed this message. It
could also not have just replayed an old message, because A would send out

5

each time a fresh nonce. So with this protocol you can ensure also for A that it
talks to B. I leave you to argue that B can be sure to talk to A. Of course these
arguments will depend on the assumptions that only A and B know the key
KAB and that nobody can break the encryption unless they have this key and
that the nonces are fresh each time the protocol is run.

There might be something mysterious about the nonces, the random num-
bers, that are sent around. They need to be unpredictable and in this way fulfil
an important role in protocols. Suppose

1. I generate a nonce and send it to you encrypted with a key we share

2. you increase it by one, encrypt it under a key I know and send it back to
me

In our notation this would correspond to the protocol

I → Y : {N}KIY
Y → I : {N + 1}KIY

What can I infer from this simple exchange:

• you must have received my message (it could not just be deflected by
somebody on the network, because the response required some calcula-
tion; doing the calculation and sending the answer requires the key KIY)

• you could only have generated your answer after I send you my initial
message (since my N is always new, it could not have been a message
that was generated before I myself knew what N is)

• if only you and me know the key KIY, the message must have come from
you

Even if this does not seemmuch information I can glean from such an exchange,
it is in fact the basic building blocks for establishing some secret or achieving
some security goal (like authentication).

While the mutual challenge-response protocol solves already the authenti-
cation problem, there are some problems. One is of course that it requires a
pre-shared secret key. That is something that needs to be established before-
hand. Not all situations allow such an assumption. For example if I am a whis-
tle blower (say Snowden) and want to talk to a journalist (say Greenwald) then
I might not have a secret pre-shared key.

Another problem is that suchmutual challenge-response systems oftenwork
in the same system in the “challenge mode” but also in the “response mode”.
For example if two serverswant to talk to each other—theywould need the pro-
tocol in responsemode, but also if theywant to talk to other servers in challenge
mode. Similarly if you in an military aircraft you have to challenge everybody
you see, in case there is a friend amongst the targets you like to shoot, but you
also have to respond to any of your own anti-aircraft guns on the ground lest
they shoot you. In these situations you have to be careful to not decode, or
answer, your own challenge. Recall the protocol is

6

A → B: NA
B → A: {NA, NB}KAB
A → B: NB

but it does not specify who is A and who is B. If, as supposed, the protocol
works in response and in challenge mode, then A will be A in one instance,
but B in the other. I hope this makes sense. Let us look at the details and lets
assume our adversary is E who just deflects our messages back to us.

challenge mode: response mode:
1) A → E: NA
2) E → A: NA
3) A → E: {NA, N′

A}KAB
4) E → A: {NA, N′

A}KAB
5) A → E: N′

A

In the first step we challenge E with a nonce we created. Since we also run the
protocol in “response mode”, E can now feed us the same challenge in step 2.
We do not knowwhere it came from (it’s over the air), but if we are in an aircraft
we should beĴer quickly answer it, otherwise we risk to be shot. So we add our
own challenge N′

A and encrypt it under the secret key KAB (step 3). Now E
does not need to know this key in order to form the correct answer for the first
protocol. It will just replays this message back to us in the challengemode (step
4). I happily accept this message—after all it is encrypted under the secret key
KAB and it contains the correct challenge from me, namely NA. So I accept
that E is a friend and send even back the challenge N′

A. The problem is that E
now starts firing at me and I have no clue what is going on. I might suspect,
erroneously, that an idiot must have leaked the secret key. Because I followed
in both cases the protocol to the leĴer, but somehow E, unknowingly tomewith
my help, managed to disguise as a friend. As a pilot, I would be a bit peeved at
that moment andwould have preferred the designer of this challenge-response
protocol had been a tad smarter. For one thing they violated the best practice
in protocol design of using the same key, KAB, for two different purposes—
challenging and responding. They beĴer had used two different keys. This
would have averted this aĴack and would have saved me a lot of trouble.

Trusted Third Parties

One limitation the protocols we discussed so far is that they pre-suppose a se-
cret shared key. As already mentioned, this is a convenience we cannot always
assume. How to establish a secret key then? Well, if both parties, say A and B,
mutually trust a third party, say S, then they can use the following protocol:

A → S : A, B
S → A : {KAB}KAS and {{KAB}KBS}KAS
A → B : {KAB}KBS
A → B : {m}KAB

7

The assumption in this protocol is that A and S share a secret key, and also B
and S (S being the trusted third party). The goal is that A can send B a message
m under a shared secret key KAB, which at the beginning of the protocol does
not exist yet. How does this protocol work? In the first step A contacts S and
says that it wants to talk to B. In turn S invents a new key KAB and sends two
messages back to A: one message is {KAB}KAS which is encrypted with the key
A and S share, and also the message {{KAB}KBS}KAS . which is encrypted with
KAB but also a second time with KBS. The point of the second message is that
it is a message intended for B. So a receives both messages and can decrypt
them—in the first case it obtains the key KAB which S suggested to use. In the
second case it obtains a message it can forward to B. B receives this message
and since it knows the key it shares with S obtains the key KAB. Now A and
B can start to exchange messages with the shared secret key KAB. What is the
advantage of S sending A two messages instead of contacting B instead? Well,
for one there can now be a time-delay between the second and third step in the
protocol. At some point in the past A and S need to have come together to share
a key, similarly B and S. After that B does not need to be “online” anymore until
A actually starts sending messages to B. A and S can completely on their own
negotiate a new key.

The major limitation of this protocol however is that I need to trust a third
party. And in this case completely, because S can of course also read easily
all messages A sends to B. The problem is that I cannot really think of any
institution who could serve as such a trusted third party. One would hope the
government would be such a trusted party, but in the Snowden-era we know
that this is wishful thinking in the West, and if I lived in Iran or North Korea,
for example, I would not even start to hope for this.

The cryptographic “magic” of public-private keys seems to offer an elegant
solution for this, but as we shall see in the next section, this requires some very
clever protocol design.

Averting Person-in-the-Middle AĴacks

The idea of public-private key encryption is that one can make public the key
Kpub which people can use to encrypt messages for me. and I can use my key
Kpriv to be the only one that can decrypt them. While this sounds all good,
it relies that people can associate me, for example, with my public key. That
i snot so trivial as it sounds. For example, if I would be the government, say
Cameron, and try to find outwho are the troublemakers in the country, Iwould
publish an innocent looking webpage and say I am The Guardian newspaper
(or alternatively The Sun for all the juicy stories), publish a public key on it, and
then just wait for incoming messages.

This problem is supposed to be solved by using certificates. The purpose of
certification organisations is that they verify that a public key, say Kpub

Bob , really
belongs to Bob. This is also the mechanism underlying the HTTPS protocol.
The problem is that this system is essentially completely broken…but this is a

8

story for another time. Suffice to say for now that one of the main certification
organisations, VeriSign, has limited its liability to $100 in case it issues a false
certificate. This is really a joke and really the wrong incentive for the certifica-
tion organisations to clean up their mess.

The problemwewant to study closer here is that protocols based on public-
private key encryption are susceptible to person-in-the-middle aĴack. Con-
sider the following protocol where A and B aĴempt to exchange secret mes-
sages using public-private keys.

• A sends public key to B

• B sends public key to A

• A sends a message encrypted with B’s public key,
B decrypts it with its private key

• B sends a message encrypted with A’s public key,
A decrypts it with its private key

In our formal notation for protocols, this would look as follows:

A → B : Kpub
A

B → A : Kpub
B

A → B : {A, m}
Kpub

B

B → A : {B, m′}
Kpub

A

Since we assume an aĴacker, say E, has complete control over the network, E
can intercept the first two messages and substitutes her own public key. The
protocol run would therefore be

1) A → E : Kpub
A

2) E → B : Kpub
E

3) B → E : Kpub
B

4) E → A : Kpub
E

5) A → E : {A, m}
Kpub

E

6) E → B : {E, m}
Kpub

B

7) B → E : {B, m′}
Kpub

E

8) E → A : {E, m′}
Kpub

A

where in steps 6 and 8, E can modify the messages by including the E in the
message. Both messages are received encrypted with E’s public key; therefore
it can decrypt it and repackage it with new content. A and B have no idea

9

that they talking to an aĴacker. Because E can modify messages, it seems very
difficult to defend against this aĴack.

But there is a clever trick…dare I say some magic. Modify the protocol
above so that A and B send their messages in two halves.

1) A → B : Kpub
A

2) B → A : Kpub
B

3) {A, m}
Kpub

B
7→ H1, H2

4) A → B : H1

5) B → A : {H1}Kpub
A

6) A → B : H2

The idea is that in step 3, A encrypts themessage (with B’s public key) and then
splits the encrypted message into two halves. Say the encrypted message is

0 X 1 p e U V T G J K 0 X I 7 G + H 7 0 m M j A M 8 p i Y 0 s I

then A splits it up into two halves

0 X 1 p e U V T G J K 0 X I 7 G︸ ︷︷ ︸
H1

+ H 7 0 m M j A M 8 p i Y 0 s I︸ ︷︷ ︸
H2

sends the first half H1 to b. B (and also any potential aĴacker) cannot do much
with this half. What B does, it encrypts it with A’s public key and sends it back
to A. Now A can decrypt it and if it matches with what it had send, it will send
B the second half H2. Only after B received this second part, it will be able to
decrypt the entire message {A, m}

Kpub
B

and see what A had wriĴen.

1. C generates a random number r

2. C calculates (F, G) = {r}K

3. C → T: r, F

4. T calculates (F′, G′) = {r}K

5. T checks that F = F′

6. T → C: r, G′

7. C checks that G = G′

Further Reading

http://www.cs.ru.nl/~rverdult/Gone_in_360_Seconds_Hijacking_with_Hitag2-USENIX_
2012.pdf

10

http://www.cs.ru.nl/~rverdult/Gone_in_360_Seconds_Hijacking_with_Hitag2-USENIX_2012.pdf
http://www.cs.ru.nl/~rverdult/Gone_in_360_Seconds_Hijacking_with_Hitag2-USENIX_2012.pdf

