
Access Control and
Privacy Policies (11)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)
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Imagine you have an completely innocent email
message, like birthday wishes to your
grandmother? Why should you still encrypt this
message and your grandmother take the effort to
decrypt it?

(Hint: The answer has nothing to do with preserving the
privacy of your grandmother and nothing to do with
keeping her birthday wishes super-secret. Also nothing to
do with you and grandmother testing the latest encryption
technology, nor just for the sake of it.)
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Interlock Protocol
Protocol between a car C and a key transponder T:

1 C generates a random number N
2 C calculates (F,G) = {N}K
3 C → T: N,F

4 T calculates (F′,G′) = {N}K
5 T checks that F = F′

6 T → C: N,G′

7 C checks that G = G′
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Zero-Knowledge Proofs

Essentially every NP-problem can be used for
ZKPs

modular logarithms: Alice chooses public A, B, p;
and private x

Ax ≡ B mod p
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Modular Arithmetic

It is easy to calculate

? ≡ 46 mod 12

A: 10

SEN 11, King’s College London – p. 6/13



Modular Arithmetic

It is easy to calculate

10 ≡ 46 mod 12

A: 10

SEN 11, King’s College London – p. 6/13



Modular Logarithm
Ordinary, non-modular logarithms:

10? = 17

⇒ log1017 = 1.2304489 . . .
⇒ 101.2304489 = 16.999999

Conclusion: 1.2304489 is very close to the true
solution
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Modular Logarithm
In contrast, modular logarithms behave much
differently:

2? ≡ 88319671 mod 97330327

Lets say I found 28305819…I try

228305819 ≡ 88032151 mod 97330327

I could be tempted to try 28305820…but the real
answer is 12314.
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Commitment Stage
1 Alice generates z random numbers r1, ..., rz, all

less than p− 1.
2 Alice sends Bob for all 1..z

hi = Ari mod p

3 Bob generates random bits b1, ..., bz by flipping a
coin

4 For each bit bi, Alice sends Bob an si where
bi = 0: si = ri
bi = 1: si = (ri − rj) mod (p− 1)

where rj is the lowest j with bj = 1
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Alice ri: 4 9 1 3
Bob bi: 0 1 0 1

↑
j



Confirmation Stage
1 For each bi Bob checks whether si conforms to

the protocol
bi = 0: Asi ≡ hi mod p
bi = 1: Asi ≡ hi ∗ h−1

j mod p

Bob was sent
h1, . . . , hz,
r1 − rj, r2 − rj, …, rz − rj mod p− 1

where the corresponding bits were 1; Bob does
not know rj, he does not know any ri where the
bit was 1
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Asi = Ari−rj

= Ari ∗A−rj

= hri ∗ h−1
rj mod p



Proving Stage

1 Alice proves she knows x, the discrete log of B
she sends

sz+1 = (x− rj)
2 Bob confirms

Asz+1 ≡ B ∗ h−1
j mod p

In order to cheat, Alice has to guess all bits in
advance. She has only 1

2
z chance of doing so.
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Buffer Overflow Attacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24n=

3

res=6

stack

ret
sp

43
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main
prog.

fact(n)

n=4 user
input

stack

4
ret
sp

buffer
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