
Handout 4 (Access Control)
Access control is essentially about deciding whether to grant access to a re-
source or deny it. Sounds easy, no? Well it turns out that things are not as
simple as they seem at first glance. Let us first look, as a case-study, at how ac-
cess control is organised in Unix-like systems (Windows systems have similar
access controls, although the details might be quite different).

Unix-Style Access Control

Following the Unix-philosophy that everything is considered as a file, even
memory, ports and so on, access control in Unix is organised around 11 Bits
that specify how a file can be accessed. These Bits are sometimes called the per-
mission aĴributes of a file. There are typically threemodes for access: read,write
and execute. Moreover there are three user groups to which the modes apply:
the owner of the file, the group the file is associated with and everybody else.
This relatively fine granularity seems to cover many useful scenarios of access
control. A typical example of some fileswith permission aĴributes is as follows:

1 $ ls -ld . * */*
2 drwxr-xr-x ping staff 32768 Apr 2 2010 .
3 -rw----r-- ping students 31359 Jul 24 2011 manual.txt
4 -r--rw--w- bob students 4359 Jul 24 2011 report.txt
5 -rwsr--r-x bob students 141359 Jun 1 2013 microedit
6 dr--r-xr-x bob staff 32768 Jul 23 2011 src
7 -rw-r--r-- bob staff 81359 Feb 28 2012 src/code.c
8 -r--rw---- emma students 959 Jan 23 2012 src/code.h

The leading d in Lines 2 and 6 indicate that the file is a directory, whereby
in the Unix-tradition the . points to the directory itself. The .. points at the
directory “above”, or parent directory. The second to fourth leĴer specify how
the owner of the file can access the file. For example Line 3 states that ping
can read and write manual.txt, but cannot execute it. The next three leĴers
specify how the group members of the file can access the file. In Line 4, for
example, all students can read and write the file report.txt. Finally the last
three leĴers specify how everybody else can access a file. This should all be
relatively familiar and straightforward. No?

There are already some special rules for directories and links. If the execute
aĴribute of a directory is not set, then one cannot change into the directory and
one cannot access any file inside it. If the write aĴribute is not set, then one
can change existing files (provide they are changeable), but one cannot create
new files. If the read aĴribute is not set, one cannot search inside the directory
(ls -la does not work) but one can access an existing file, provided one knows
its name. Links to files never depend on the permission of the link, but the file
they are pointing to. Otherwise one could easily change access rights to files.

While the abovemight sound alreadymoderately complicated, the real com-
plications with Unix-style file permissions involve the setuid and setgid at-
tributes. For example the file microedit in Line 5 has the setuid aĴribute set

1



(indicated by the s in place of the usual x). The purpose of setuid and setgid is
to solve the following puzzle: The program passwd allows users to change their
passwords. Therefore passwdneeds to havewrite access to the file /etc/passwd.
But this file cannot be writable for every user, otherwise anyone can set any-
one else’s password. So changing securely passwords cannot be achieved with
the simple Unix access rights discussed so far. While this situation might look
like an anomaly, it is in fact an often occurring problem. For example looking at
current active processeswith /bin/ps requires access to internal data structures
of the operating system, which only root should be allowed to. In fact any of
the following actions cannot be configured for single users, but need privileged
root access

• changing system databases (users, groups, routing tables and so on)

• opening a network port below 1024

• interacting with peripheral hardware, such as printers, harddisk etc

• overwriting operating system facilities, like process scheduling andmem-
ory management

This will typically involve quite a lot of programs on a Unix system. I counted
90 programs with the setuid aĴribute set on my bog-standardMac OSX system
(including the program /usr/bin/login for example). The problem is that if
there is a security problem with only one of them, be it a buffer overflow for
example, then malicious users can gain root access (and for outside aĴackers it
is much easier to take over a system). Unfortunately it is rather easy to cause a
security problem since the handling of elevating and dropping access rights in
such programs rests entirely with the programmer.

The fundamental idea behind the setuid aĴribute is that a file will be able to
run not with the callers access rights, but with the rights of the owner of the file.
So /usr/bin/login will always be running with root access rights, no maĴer
who invokes this program. The problem is that this entails a rather complicated
semantics of what the identity of a process (that runs the program) is. One
would hope there is only one such ID, but in fact Unix distinguishes three(!):

• real identity
This is the ID of the user who creates the process; can only be changed to
something else by root.

• effective identity
This is the ID that is used to grant or deny access to a resource; can be
changed to either the real identity or saved identity byusers, can be changed
to anything by root.

• saved identity
If the setuid bit set in a file then the process is startedwith the real identity
of the user who started the program, and the identity of the owner of the

2



program as effective and saved identity. If the setuid bit is not set, then
the saved identity will be the real identity.

As an example consider again the passwd program. When started by, say the
user foo, it has at the beginning the identities:

• real identity: foo
effective identity: foo
saved identity: root

It is then allowed to change the effective identity to the saved identity to have

• real identity: foo
effective identity: root
saved identity: root

It can now read and write the file /etc/passwd. After finishing the job it is
supposed to drop the effective identity back to foo. This is the responsibility
of the programmers who wrote passwd. Notice that the effective identity is not
automatically elevated to root, but the program itself must make this change.
After it has done the work, the effective identity should go back to the real
identity.

Despite this complicated semantics, Unix-style access control is of no use in
a number of situations. For example it cannot be used to exclude some subset of
people, but otherwise have files readable by everybody else (say youwant to re-
strict access to a file such that your office mates cannot access a file). You could
try seĴing the group of the file to this subset and then restrict access accord-
ingly. But this does not help, because users can drop membership in groups. If
one needs such fine-grained control over who can access a file, one needs more
powerful mandatory access controls as described next.

Secrecy and Integrity

Often you need to keep information secret within a system or organisation,
or secret from the “outside world”. An example would be to keep insiders
from leaking information to competitors. An instance of such an access control
system is the secrecy levels used in the military. There you distinguish usually
four secrecy levels:

• top secret

• secret

• confidential

• unclassified

3



The idea is that the secrets classified as top-secret are most closely guarded
and only accessible to people who have a special clearance. The unclassified
category is the lowest level not needing any clearance. While the idea behind
these security levels is quite straightforward, there are some interesting phe-
nomenons that you need to think about when realising such a system. First
this kind of access control needs to be mandatory as opposed to discretionary.
With discretionary access control, the users can decide how to restrict or grant
access to resources. With mandatory access control, the access to resources is
enforced “system-wide” and cannot be controlled by the user. There are also
some interesting rules for reading and writing a resource that need to be en-
forced:

• ReadRule: a principal P can read a resourceO provided P’s security level
is at least as high as O’s

• Write Rule: a principal P can write a resource O provided O’s security
level is at least as high as P’s

The first rule implies that a principal with secret clearance can read secret doc-
uments or lower, but not documents classified top-secret. The second rule for
writing needs to be the other way around: someone with secret clearance can
write secret or top-secret documents—no information is leaked in these cases.
In contrast the principal cannot write confidential documents, because then in-
formation can be leaked to lower levels. These rules about enforcing secrecy
with multi-level clearances are often called Bell/LaPadula model, named after
two people who studied such systems.

A problemwith this kind of access control system is when two people want
to talk to each other but are assigned different security clearances, say secret
and confidential. In these situations, the people with the higher clearance have
to lower their security level and are not allowed to take any document from
the higher level with them to the lower level (otherwise information could be
leaked). In actual systems, this might mean that people need to log out and log
into the system again—this time with credentials for the lower level.

While secrecy is one property you oftenwant to enforce, integrity is another.
This property ensures that nobody without adequate clearance can change, or
tamper with, systems. An example for this property is a fire-wall, which isolates
a local system from threads from the Internet, for example. The rule for such a
system is that somebody from inside the fire-wall can write resources outside
the firewall, but you cannot write a resource inside the fire-wall from outside.
Otherwise an outside can just tamperwith a system in order to break in. In con-
trast we can read resources from inside the fire-wall, for example web-pages.
But we cannot read anything from outside the fire-wall. Lest we might intro-
duce a virus into the system (behind the fire-wall). In effect in order to ensure
integrity the read and write rules are reversed from the case of secrecy:

• ReadRule: a principal P can read a resourceO provided P’s security level
is lower or equal than O’s

4



• Write Rule: a principal P can write a resource O provided O’s security
level is lower or equal than P’s

This kind of access control system is called Biba model, named after Kenneth
Biba. Its purpose is to prevent data modification by unauthorised principals.

The paradoxical result of the different reading and writing rules in the Bel-
l/LaPadula and Biba models is that we cannot have secrecy and integrity at the
same time in a system, or they need to be enforced by different means.

Multi-Agent Access Control

In military or banking, for example, very critical decisions need to be made
using a two-man rule. Thismeans such decisions need to be taken by two people
together, so that no single person can defraud a bank or start a nuclear war (you
will know what I mean if you have seen the classic movie “Dr Strangelove or:
How I Learned to Stop Worrying and Love the Bomb”1).

Let us assume we want to implement a system where a CEOs can fell deci-
sions on their own, but two managing directors (MDs) need to come together
to fell the same decision. If “lowly” directors (Ds) want to take the decision,
three need to come together. An obvious solution to such a problem is to split
the necessary key into n parts according to the “level” where the decision is
taken. For example one key for a CEO, two halves for the MDs and three thirds
for the Ds. The problem with this kind of sharing a key is that there might be
many hundreds MDs and Ds in your organisations. Simple-minded halving or
devision by three of the keey just does not work.

A much more clever solution was Blakley and Shamir in 1979. This solu-
tion is inspired by some simple geometric facts. Given a three-dimentional axis
system, we can specify a point on the z-axis, say, by specifying its coordinates.
But we could equally specify this point by a line that intersects the z-axis in this
point. How can a line be specified? Well, by giving two spaces in space. But as
youmight remember from school days, we can specify the point also by a plane
and a plane can be specified by three points in space. This could be pictured as
follows:

1http://en.wikipedia.org/wiki/Dr._Strangelove

5

http://en.wikipedia.org/wiki/Dr._Strangelove


Scaling this idea to more dimensions allows for even more levels of access con-
trol.

Further Information

If you want to know more about the intricacies of the “simple” Unix access
control system you might find the relatively readable paper about “Setuid De-
mystified” useful.

http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf

6

http://www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf

