
Handout 6 (Zero-Knowledge Proofs)
Zero-knowledge proofs (short ZKP) solve a paradoxical puzzle: How to con-
vince somebody else that one knows a secret, without revealing what the secret
actually is? This sounds like a problem the Mad HaĴer from Alice in Won-
derland would occupy himself with, but actually there some serious and not
so serious applications of it. For example, if you solve crosswords with your
friend, say Bob, you might want to convince him that you found a solution for
one question, but of course you do not want to reveal the solution, as this might
give Bob an advantage somewhere else in the crossword.

So how to convince Bob that you know the answer (or a secret)? One way
would be to come up with the following protocol: Suppose the answer is folio.
Then look up the definition of folio in a dictionary. Say you find:

“an individual leaf of paper or parchment, either loose as one of a
series or forming part of a bound volume, which is numbered on
the recto or front side only.”

Take the first non-small word1 in this definition, in this case individual, and look
up the definition of this word, say

“a single human being as distinct from a group”

In this definition take the second non-small word, that is human, and again look
up the definition of this word. This will yield

“relating to or characteristic of humankind”

You could go on looking up the definition of the third non-small word in this
definition and so on. But let us assume you agreed with Bob to stop after three
iterations with the third non-article word in the last definition, that is or. Now,
instead of sending to Bob the solution folio, you send to him characteristic.

How can Bob verify that you know the solution? Well, once he solved it
himself, he can use the dictionary and follow the same “trail” as you did. If
the final word agrees with what you had sent him, he must infer you knew the
solution earlier than him. This protocol works like a one-way hash function
because characteristic does not give any hint as to what was the first word was.
I leave you to think why this protocol avoids small words?

After Bob found his solution and verified that according to the protocol it
“maps” also to characteristic, can he be entirely sure no cheating is going on?
Not with 100% certainty. It could have been possible that he was given char-
acteristic as the word, but it derived from a different word. This might seem
very unlikely, but at least theoretical it is a possibility. Protocols based on
zero-knowledge proofs will produce a similar result—they give an answer that

© Christian Urban, King’s College London, 2014, 2015
1Let’s say the, a, an, or, and …fall into the category of small words.

1



Figure 1: The authors of this paper used a hash in order to prove later that they
have managed to break into cars.

might be erroneous in a very small number of cases. The point is to iterate them
long enough so that the theoretical possibility of cheating is negligibly small.

By the way, the authors of the paper “Dismantling Megamos Crypto: Wire-
lessly Lockpicking a Vehicle Immobilizer” who were barred from publishing
their results used also a hash to prove they did the work and (presumably)
managed to get into cars without a key; see Figure 1. This is very similar to the
method above about crosswords: They like to prove that they did thework, but
not giving out the “solution”. But this also showswhat the problemwith such a
method is: yes, we can hide the secret temporarily, but if somebody else wants
to verify it, then the secret has to be made public. Bob needs to know that folio
is the solution before he can verify the claim of Alice that she had the solution
first. Similarly with the car-crypto paper: we needed to wait until September
2015when the authorswere finally able to publish their findings in order to ver-
ify the hash. Zero-knowledge proofs, in contrast, can be immediately checked,
even if the secret is not public yet and perhaps never will be.

ZKP: An Illustrative Example

The idea behind zero-knowledge proofs is not very obvious andwill surely take
some time for you to digest. Therefore let us start with a simple illustrative

2



example. The example will not be perfect, but hopefully explain the gist of the
idea. The example is calledAlibaba’s cave, which graphically looks as follows:2

Step 1 Step 2 Step 3

Let us take a closer look at the picture in Step 1: The cave has a tunnel which
forks at some point. Both forks are connected in a loop. At the deep end of
the loop is a magic wand. The point of the magic wand is that Alice knows the
secret word for how to open it. She wants to keep the word secret, but wants
to convince Bob that she knows it.

One way of course would be to let Bob follow her, but then he would also
find out the secret. So this does not work. To find a solution, let us first fix the
rules: At the beginning Alice and Bob are outside the cave. Alice goes in alone
and takes either tunnel labelled A in the picture, or the other tunnel labelled B.
She waits at the magic wand for the instructions from Bob, who also goes into
the gave and observes what happens at the fork. He has no knowledge which
tunnel Alice took and calls out (in Step 2) that she should emerge from tunnel
A, for example. If she knows the secret for opening the wand, this will not be
a problem for Alice. If she was already in the A-segment of the tunnel, then
she just comes back. If she was in the B-segment of the tunnel she will say the
magic word and goes through the wand to emerge from A as requested by Bob.

Let us have a look at the case where Alice cheats, that is not knows the
secret. She would still go into the cave and use, for example the B-segment
of the tunnel. If now Bob says she should emerge from B, she is lucky. But if he
says she should emerge from A then Alice is in trouble: Bob will find out she
does not actually know the secret. So in order to fool Bob she needs to anticipate
his call, and already go into the corresponding tunnel. This of course also does
not work, since Bob can make any call he wants. Consequently in order to find
out whether Alice cheats, Bob just needs to repeat this protocol many times.
Each time Alice has a chance of 1

2 to be lucky or being found out. Iterating this
n times means she must be right every time andwhen cheating: the probability
for this is 1

2
n, number that for already relatively small n, say 10, is incredibly

small.
There are some interesting observations we can make about Alibaba’s cave

and the ZKP protocol between Alice and Bob:

• Completeness If Alice knows the secret, Bob accepts Alice “proof” for
sure. There is no error possible in that Bob thinks Alice cheats when she
actually knows the secret.

2The example is taken from an article titled “How to Explain Zero-Knowledge Protocols to Your
Children” available from http://pages.cs.wisc.edu/~mkowalcz/628.pdf.

3

http://pages.cs.wisc.edu/~mkowalcz/628.pdf


• Soundness If Alice does not know the secret, Bob accepts her “proof”
with a very small probability. If, as in the example above, the probability
of being able to hide cheating is 1

2 in each round it will be 1
2

n after n-
rounds, which even for small n say > 10 is very small indeed.

• Zero-Knowledge Even if Bob accepts the proof by Alice, he cannot con-
vince anybody else.

The last property is the most interesting one. Assume Alice has convinced Bob
that she knows the secret and Bob filmed the whole protocol with a camera.
Can he use the video to convince anybody else? After a moment of thought,
you will agree that this is not the case. Alice and Bob might have just made it
all up and colluded by Bob tellingAlice beforehandwhich tunnel hewill call. In
this way it appears as if all iterations of the protocol were successful, but they
prove nothing. If another person wants to find out whether Alice knows the
secret, he or she would have to conduct the protocol again. This is actually the
formal definition of a zero-knowledge proof: an independent observer cannot
distinguish between a real protocol (where Alice knows the secret) and a fake
one (where Bob and Alice colluded).

Using an Graph-Isomorphism Problem for ZKPs

Now the question is how can we translate Alibaba’s cave into a computer sci-
ence solution? It turns out we need an NP problem for that. The main feature
of an NP problem is that it is computational very hard to generate a solution,
but it is very easy to check whether a given solution indeed solves the problem
at hand.3

One NP problem is the graph isomorphism problem. It essentially determines
whether the following two graphs, say G1 and G2, can be moved and stretched
so that they look exactly the same.

G1 G2

Graph G1 Graph G2
a 1
b 6
c 8
d 3
g 5
h 2
i 4
j 7

The table on the right gives a mapping of the nodes of the first graph to the
nodes of the second. With this mapping we can check: node a is connected in
G1 with g, h and i. Node a maps to node 1 in G2, which is connected to 2, 4 and
5, which again correspond via the mapping to h, i and g respectively. Let us
write σ for such a table and let us write

3The question whether P = NP or not, we leave to others to speculate about.

4



G1 = σ(G2)

for two isomorphic graphs (σ being the isomorphism). It is actually very easy
to construct two isomorphic graphs: Start with an arbitrary graph, re-label the
nodes consistently. Alice will need to do this frequently for the protocol below.
In order to be useful, we therefore would need to consider substantially larger
graphs, like with thousand nodes.

Now the secret which Alice tries to hide is the knowledge of such an iso-
morphism σ between two such graphs. But she can convince Bob whether she
knows such an isomorphism for two graphs, say G1 and G2, using the same
idea as in the example with Alibaba’s cave. For this Alice and Bob must follow
the following protocol:

1. Alice generates an isomorphic graph H which she sends to Bob (in each
iteration she needs to generate a different H).

2. After receiving H, Bob asks Alice either for an isomorphism between G1
and H, or G2 and H.

3. Alice and Bob repeat this procedure n times.

In Step 1 it is important that Alice always generates a fresh isomorphic graph.
I let you think what would happen if Alice sends out twice the same graph H.

As said before, this is relatively easy to generate by consistently relabelling
nodes. If she started from G1, Alice will have generated

H = σ′(G1) (1)

where σ′ is the isomorphism between H and G1. But she could equally have
started from G2. In the case where G1 and G2 are isomorphic, if H is isomorphic
with G1, it will also be isomorphic with G2, and vice versa.

After generating H, Alice sends it to Bob. The important point is that she
needs to “commit” to this H, therefore this kind of zero-knowledge protocols
are called commitment protocols. Only after receiving H, Bob will make up his
mind about which isomorphism he asks for—whether between H and G1 or H
and G2. For this he could flip a coin, since the choice should be as unpredictable
for Alice as possible. Once Alice receives the request, she has to produce an iso-
morphism. If she generated H as shown in (1) and is asked for an isomorphism
between H and G1, she just sends σ′. If she had been asked for an isomorphism
between H and G2, she just has to compose her secret isomorphism σ and σ′.
Themain point for the protocol is that even knowing the isomorphism between
H and G1 or H and G2, will not make the task easier to find the isomorphism
between G1 and G2, which is the secret Alice tries to protect.

In order to make it crystal clear how this protocol proceeds, let us give a
version using our more formal notation for protocols:

5



0) A → B : G1 and G2
1a) A → B : H1
1b) B → A : produce isomorphism G1 ↔ H1? (or G2 ↔ H1)
1c) A → B : requested isomorphism
2a) A → B : H2
2b) B → A : produce isomorphism G1 ↔ H2? (or G2 ↔ H2)
2c) A → B : requested isomorphism

…

As can be seen the protocol runs for some agreed number of iterations. The Hi
Alice needs to produce, need to be all distinct. I hope you now know why?

It is also crucial that in each iteration, Alice first sends Hi and then Bob
can decide which isomorphism he wants: either G1 ↔ Hi or G2 ↔ Hi. If
somehow Alice can find out before she commiĴed to Hi, she can cheat. For
this assume Alice does not know an isomorphism between G1 and G2. If she
knows which isomorphism Bob will ask for she can craft H in such a way that
it is isomorphism with either G1 or G2 (but it cannot with both). Then in each
case shewould send Bob a correct answer and hewould come to the conclusion
that all is well. I let you also answer the question whether such a protocol run
between Alice and Bob would convince a third person, say Pete.

Since the interactive nature of the above PKZ protocol and the correct or-
dering of the messages is so important for the “correctness” of the protocol, it
might look surprising that the same goal can also me achieved in a completely
offline manner. By this I mean Alice can publish all data at once, and then at a
later time, Bob can inspect the data and come to the conclusion whether or not
Alice knows the secret (again without actually learning about the secret). For
this Alice has to do the following:

1. Alice generates n isomorphic graphs H1..n (they need to be all distinct)

2. she feeds the H1..n into a hashing function (for example encoded as as
matrix)

3. she takes the first n bits of the output of the hashing function: whenever
the output is 0, she shows an isomorphism with G1; for 1 she shows an
isomorphism with G2

The reasonwhy thisworks and achieves the same goal as the interactive variant
is that Alice has no control over the hashing function. It would be computation-
ally just too hard to assemble a set of H1..n such that she can force where 0s and
1s in the hash values are such that it would pass an external test. The point
is that Alice can publish all this data on the comfort of her own web-page, for
example, and in this way convince everybody who bothers to check.

The virtue of the use of graphs and isomorphism for a zero-knowledge pro-
tocol is that the idea why it works are relatively straightforward. The disad-
vantage is that encoding any secret into a graph-isomorphism, while possible,
is awkward. The good news is that in fact any NP problem can be used as part
of a ZKP protocol.

6



Using Modular Logarithms for ZKP Protocols

While information can be encoded into graph isomorphisms, it is not the most
convenient carrier of information. Clearly it is much easier to encode informa-
tion into numbers. Let us look at zero-knowledge proofs that use numbers as
secrets. For this the underlying NP-problem is to calculate discrete logarithms.
It can be used by choosing public numbers A, B, p, and private x such that

Ax ≡ B mod p

holds. The secret Alice tries to keep secret is x. The point of the modular loga-
rithm is that it is very hard from the public data to calculate x (for large primes).
Now the protocol proceeds in three stages:

• Commitment Stage

1. Alice generates z randomnumbers r1, . . . , rz, all less than p− 1. Alice
then sends Bob for all i = 1, . . . , z:

hi = Ari mod p

2. Bob generates z random bits, say b1, . . . , bz. He can do this by flip-
ping z times a coin, for example.

3. For each bit bi, Alice sends Bob an si where

if bi = 0: si = ri
if bi = 1: si = (ri − rj) mod (p − 1)

where rj is the lowest j where bj = 1.

For understanding the last step, let z be just 4. We have four random values
ri chosen by Alice and four random bits bi chosen subsequently by Bob, for
example

ri: 4 9 1 3
bi: 0 1 0 1

↑
j

The highlighted column is the lowest where bi = 1 (counted from the left). That
means rj = 9. The reason for leĴingAlice choose the randomnumbers r1, . . . , rz
will become clear shortly. Next is the confirmation phasewhere Bob essentially
checks whether Alice has sent him “correct” si and hi.

• Confirmation Stage

1. For each bi Bob checks whether si conform to the protocol

if bi = 0: Asi
?≡ hi mod p

if bi = 1: Asi
?≡ hi ∗ h−1

j mod p

7



To understand the case for bi = 1, you have to do the following calculation:

Asi = Ari−rj

= Ari ∗ A−rj

= hri ∗ h−1
rj

mod p

What is interesting that so far nothing has been sent about x, which is the secret
Alice has. Also notice that Bob does not know rj. He received

rj − rj, rm − rj, …, rp − rj mod p − 1

whenever his corresponding bits were 1. So Bob does not know rj and also does
not know any ri where the bit was 1. Information about the x is sent in the next
stage (obviously not revealing x).

• Proving Stage

1. Alice proves she knows x, the discrete log of B, by sending

sz+1 = x − rj mod p − 1

2. Bob confirms

Asz+1
?≡ B ∗ h−1

j mod p

To understand the last step, you have to do the trick again that

Asz+1 = Ax−rj = . . .

which I leave to you.
Now the question is how can Alice cheat? In order to cheat she has to coor-

dinate what she sends as hi in step 1 and si in step 3 of the commitment stage,
and also what to send as sz+1 in the proving stage. For the laĴer of course Al-
ice does not know x, so she just chooses some random number for sz+1 and
calculates

Asz+1

and then solves the equation

Asz+1 ≡ B ∗ y mod p

for y. This is easy since no logarithm needs to be computed. If Alice can guess
the j where the first 1 will appear in Bob’s bit vector, then she sends the in-
verse of y as hj and 0 as sj. However, notice that when she calculates a solution
for y she does not know rj. For this she would need to calculate the modular
logarithm

y ≡ Arj mod p

8



which is hard (see step 1 in the commitment stage).
Having seĴled on what hj should be, now what should Alice send as the

other hi and other si? If the bi happens to be a 1, then the hi and other si need
to satisfy the test

Asi
?≡ hi ∗ h−1

j mod p

where she has already seĴled on the value of h−1
j . Lets say she choses si at

random, then she just needs to solve

Asi ≡ z ∗ h−1
j mod p

for z. Again that is easy, but it does not allow us to know ri, because then we
would again need to solve amodular logarithmproblem. Let us call an hi which
was solved the easy way as bogus. Alice has to produce bogus hi for all bits that
are going to be 1 in advance! This means she has to guess all the bits correctly.
(Yes? I let you think about this.)

Let us see what happens if she guesses wrongly: Suppose the bit bi = 1
where she thought she will get a 0. Then she has already sent an hi and hj and
now must find an si such that

Asi ≡ hi ∗ h−1
j mod p

holds. For this remember in calculating hi, she just chose a random si. Now
she has to send a genuine one. But this is of course too hard. If she knew the
genuine ri and rj for hi and hj, it would be easy (in this case si = ri − rj). But
she does not. So she will be found out. If bi = 0, but she thought she will get a
1, then she has to send a si which satisfies

Asi ≡ hi mod p

Again she does not know ri. So it is a too hard task and she will be found out
again.

To sum up, in order for Alice to successfully cheat Bob, she needs to guess
all bits correctly. She has only a 1

2z chance of doing this.

Further Reading

Make sure you understand what NP problems are.4 They are the building
blocks for zero-knowledge proofs. Zero-Knowldege proofs are not yet widely
used in production systems, but it is slowly gaining ground. One area of appli-
cation where they pop up is crypto currencies (for example Zerocoins or how
to make sure a Bitcoin exchange is solvent without revealing its assets).

If youwant to brushupon themodular logarithmproblem, theKhanAcademy
has a nice video:

4http://en.wikipedia.org/wiki/NP_(complexity)

9

http://en.wikipedia.org/wiki/NP_(complexity)


https://www.khanacademy.org/video/discrete-logarithm-problem

10

https://www.khanacademy.org/video/discrete-logarithm-problem

