
Access Control and
Privacy Policies (9)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

APP 09, King’s College London – p. 1/36

APP 09, King’s College London – p. 2/36

Old-Fashioned Eng. vs. CS

bridges:
engineers can “look” at a
bridge and have a pretty
good intuition about
whether it will hold up or not
(redundancy; predictive
theory)

code:
programmers have very
little intuition about their
code; often it is too
expensive to have
redundancy; not
“continuous”

APP 09, King’s College London – p. 3/36

Dijkstra on Testing

“Program testing can be a very effective way to
show the presence of bugs, but it is hopelessly
inadequate for showing their absence.”

unfortunately attackers exploit bugs (Satan’s
computer vs Murphy’s)

Dijkstra: shortest path algorithm, dining philosophers
problem, semaphores

APP 09, King’s College London – p. 4/36

Proving Programs to be Correct

Theorem: There are infinitely many prime numbers.
Proof …

similarly

Theorem: The program is doing what it is sup+ed to
be doing.
Long, long proof …

This can be a gigantic proof. The only hope is to have help
from the computer. ‘Program’ is here to be understood to be
quite general (protocol, OS,…).

APP 09, King’s College London – p. 5/36

Mars Pathfinder Mission 1997

despite NASA’s famous testing procedures, the
lander crashed frequently on Mars
a scheduling algorithm was not used in the OS

APP 09, King’s College London – p. 6/36

APP 09, King’s College London – p. 7/36

a

a

time0

low priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

locked a resource

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

locked a resource

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

locked a resource

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

locked a resource

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

locked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

locked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

locked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

locked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

locked a resource

…

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

a

locked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

alocked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 7/36

a

alocked a resource

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

Priority Inheritance Scheduling

Let a low priority process L temporarily inherit
the high priority of H until L leaves the critical
section unlocking the resource.

Once the resource is unlocked L returns to its
original priority level.

APP 09, King’s College London – p. 8/36

APP 09, King’s College London – p. 9/36

a

a

AL BL AR BR

time0

low priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 9/36

a

a

AL BL AR BR

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 9/36

a

a

AL BL AR BR

A

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 9/36

a

a

AL BL AR BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 9/36

a

a

AL BL

AR BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 9/36

a

a

AL BL

AR BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 9/36

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 9/36

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 9/36

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 9/36

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

APP 09, King’s College London – p. 9/36

a

a

AL BL

AR

BR

A B

time0

low priority

high priority

medium pr.

Scheduling: You want to avoid that a high
priority process is staved indefinitely.

Priority Inheritance Scheduling

Let a low priority process L temporarily inherit
the high priority of H until L leaves the critical
section unlocking the resource.

Once the resource is unlocked L returns to its
original priority level. BOGUS

…L needs to switch to the highest remaining
priority of the threads that it blocks.

this error is already known since around 1999

APP 09, King’s College London – p. 10/36

Priority Inheritance Scheduling

Let a low priority process L temporarily inherit
the high priority of H until L leaves the critical
section unlocking the resource.

Once the resource is unlocked L returns to its
original priority level. BOGUS

…L needs to switch to the highest remaining
priority of the threads that it blocks.

this error is already known since around 1999

APP 09, King’s College London – p. 10/36

by Rajkumar, 1991
“it resumes the priority it had at the point of entry into
the critical section”

APP 09, King’s College London – p. 11/36

by Jane Liu, 2000
“The job Jl executes at its inherited priority until it
releases R; at that time, the priority of Jl returns to its
priority at the time when it acquires the resource R.”
gives pseudo code and totally bogus data structures
interesting part “left as an exercise”

APP 09, King’s College London – p. 12/36

by Laplante and Ovaska, 2011 ($113.76)
“when [the task] exits the critical section that caused the
block, it reverts to the priority it had when it entered
that section”

APP 09, King’s College London – p. 13/36

Priority Scheduling
a scheduling algorithm that is widely used in
real-time operating systems
has been “proved” correct by hand in a paper in
1983
but this algorithm turned out to be incorrect,
despite its “proof”

we corrected the algorithm and then really
proved that it is correct
we implemented this algorithm in a small OS
called PINTOS (used for teaching at Stanford)
our implementation was much more efficient
than their reference implementation

APP 09, King’s College London – p. 14/36

Priority Scheduling
a scheduling algorithm that is widely used in
real-time operating systems
has been “proved” correct by hand in a paper in
1983
but this algorithm turned out to be incorrect,
despite its “proof”

we corrected the algorithm and then really
proved that it is correct
we implemented this algorithm in a small OS
called PINTOS (used for teaching at Stanford)
our implementation was much more efficient
than their reference implementation

APP 09, King’s College London – p. 14/36

Design of AC-Policies

”what you specify is what you get but
not necessarily what you want…”

main work by Chunhan Wu (PhD-student)

APP 09, King’s College London – p. 15/36

Testing Policies

core
system

your system

policy +

APP 09, King’s College London – p. 16/36

Testing Policies

core
system

your system

policy +

a seed
virus, Trojan

APP 09, King’s College London – p. 16/36

Testing Policies

core
system

your system

policy +

tainted

APP 09, King’s College London – p. 16/36

Testing Policies

core
system

your system

policy +

tainted

APP 09, King’s College London – p. 16/36

Testing Policies

core
system

your system

policy +

tainted

APP 09, King’s College London – p. 16/36

Testing Policies

core
system

your system

policy +

tainted

…

APP 09, King’s College London – p. 16/36

A Sound and Complete Test
working purely in the dynamic world does not
work --- infinite state space

working purely on static policies also does not
work --- because of over approximation

sup+e a tainted file has type bin and
there is a role r which can both read and write bin-files

then we would conclude that this tainted file can spread
but if there is no process with role r and it will never
been created, then the file actually does not spread

our solution: take a middle ground and record
precisely the information of the initial state, but
be less precise about every newly created object.

APP 09, King’s College London – p. 17/36

A Sound and Complete Test
working purely in the dynamic world does not
work --- infinite state space

working purely on static policies also does not
work --- because of over approximation

sup+e a tainted file has type bin and
there is a role r which can both read and write bin-files
then we would conclude that this tainted file can spread

but if there is no process with role r and it will never
been created, then the file actually does not spread

our solution: take a middle ground and record
precisely the information of the initial state, but
be less precise about every newly created object.

APP 09, King’s College London – p. 17/36

A Sound and Complete Test
working purely in the dynamic world does not
work --- infinite state space

working purely on static policies also does not
work --- because of over approximation

sup+e a tainted file has type bin and
there is a role r which can both read and write bin-files
then we would conclude that this tainted file can spread
but if there is no process with role r and it will never
been created, then the file actually does not spread

our solution: take a middle ground and record
precisely the information of the initial state, but
be less precise about every newly created object.

APP 09, King’s College London – p. 17/36

A Sound and Complete Test
working purely in the dynamic world does not
work --- infinite state space

working purely on static policies also does not
work --- because of over approximation

sup+e a tainted file has type bin and
there is a role r which can both read and write bin-files
then we would conclude that this tainted file can spread
but if there is no process with role r and it will never
been created, then the file actually does not spread

our solution: take a middle ground and record
precisely the information of the initial state, but
be less precise about every newly created object.

APP 09, King’s College London – p. 17/36

Big Proofs in CS
Formal proofs in CS sound like science fiction?
Completely irrelevant! Lecturer gone mad?

in 2008, verification of a small C-compiler
“if my input program has a certain behaviour, then the
compiled machine code has the same behaviour”
is as good as gcc -O1, but much less buggy

in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)

APP 09, King’s College London – p. 18/36

Big Proofs in CS
Formal proofs in CS sound like science fiction?
Completely irrelevant! Lecturer gone mad?
in 2008, verification of a small C-compiler

“if my input program has a certain behaviour, then the
compiled machine code has the same behaviour”
is as good as gcc -O1, but much less buggy

in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)

APP 09, King’s College London – p. 18/36

Goal
Remember the Bridges example?
Can we look at our programs and somehow
ensure they are secure/bug free/correct?

Very hard: Anything interesting about programs
is equivalent to halting problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by
being as close as +sible of deciding the halting
problem, without actually deciding the halting
problem. ⇒ static analysis

APP 09, King’s College London – p. 19/36

Goal
Remember the Bridges example?
Can we look at our programs and somehow
ensure they are secure/bug free/correct?

Very hard: Anything interesting about programs
is equivalent to halting problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by
being as close as +sible of deciding the halting
problem, without actually deciding the halting
problem. ⇒ static analysis

APP 09, King’s College London – p. 19/36

Goal
Remember the Bridges example?
Can we look at our programs and somehow
ensure they are secure/bug free/correct?

Very hard: Anything interesting about programs
is equivalent to halting problem, which is
undecidable.

Solution: We avoid this “minor” obstacle by
being as close as +sible of deciding the halting
problem, without actually deciding the halting
problem. ⇒ static analysis

APP 09, King’s College London – p. 19/36

What is Static Analysis?

depending on some initial input, a program
(behaviour) will “develop” over time.

APP 09, King’s College London – p. 20/36

What is Static Analysis?

APP 09, King’s College London – p. 21/36

What is Static Analysis?

APP 09, King’s College London – p. 22/36

What is Static Analysis?

to be avoided

APP 09, King’s College London – p. 23/36

What is Static Analysis?

this needs more work

APP 09, King’s College London – p. 24/36

What is Static Analysis?

APP 09, King’s College London – p. 25/36

Concrete Example: Sign-Analysis

⟨Exp⟩ ::= ⟨Exp⟩ + ⟨Exp⟩
| ⟨Exp⟩ * ⟨Exp⟩
| ⟨Exp⟩ = ⟨Exp⟩
| ⟨num⟩
| ⟨var⟩

⟨Stmt⟩ ::= ⟨label⟩ :
| ⟨var⟩ := ⟨Exp⟩
| jmp? ⟨Exp⟩ ⟨label⟩
| goto ⟨label⟩

⟨Prog⟩ ::= ⟨Stmt⟩ …
APP 09, King’s College London – p. 26/36

Concrete Example: Sign-Analysis

⟨Exp⟩ ::= ⟨Exp⟩ + ⟨Exp⟩
| ⟨Exp⟩ * ⟨Exp⟩
| ⟨Exp⟩ = ⟨Exp⟩
| ⟨num⟩
| ⟨var⟩

⟨Stmt⟩ ::= ⟨label⟩ :
| ⟨var⟩ := ⟨Exp⟩
| jmp? ⟨Exp⟩ ⟨label⟩
| goto ⟨label⟩

⟨Prog⟩ ::= ⟨Stmt⟩ …
APP 09, King’s College London – p. 27/36

a := 1
n := 5

top: jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

Concrete Example: Sign-Analysis

⟨Exp⟩ ::= ⟨Exp⟩ + ⟨Exp⟩
| ⟨Exp⟩ * ⟨Exp⟩
| ⟨Exp⟩ = ⟨Exp⟩
| ⟨num⟩
| ⟨var⟩

⟨Stmt⟩ ::= ⟨label⟩ :
| ⟨var⟩ := ⟨Exp⟩
| jmp? ⟨Exp⟩ ⟨label⟩
| goto ⟨label⟩

⟨Prog⟩ ::= ⟨Stmt⟩ …
APP 09, King’s College London – p. 28/36

n := 6
m1 := 0
m2 := 1

top: jmp? n = 0 done
tmp := m2
m2 := m1 + m2
m1 := tmp
n := n + -1
goto top

done:

Eval
[n]env

def
= n

[x]env
def
= env(x)

[e1 + e2]env
def
= [e1]env + [e2]env

[e1 ∗ e2]env
def
= [e1]env ∗ [e2]env

[e1 = e2]env
def
=

{
1 if [e1]env = [e2]env
0 otherwise

def eval_exp(e: Exp, env: Env) : Int = e match {
case Num(n) => n
case Var(x) => env(x)
case Plus(e1, e2) => eval_exp(e1, env) + eval_exp(e2, env)
case Times(e1, e2) => eval_exp(e1, env) * eval_exp(e2, env)
case Equ(e1, e2) =>

if (eval_exp(e1, env) == eval_exp(e2, env)) 1 else 0
}

APP 09, King’s College London – p. 29/36

A program

a := 1
n := 5

top: jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

Some snippets

”” a := 1
n := 5

top: jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

top: jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

done:

APP 09, King’s College London – p. 30/36

Eval for Stmts
Let sn be the snippets of a program

[nil]env
def
= env

[Label(l :) :: rest]env
def
= [rest]env

[x := e :: rest]env
def
= [rest](env[x:=[e]env])

[jmp? e l :: rest]env
def
=

{
[sn(l)]env if [e]env = 1
[rest]env otherwise

[goto l :: rest]env
def
= [sn(l)]env

Start with [sn(””)]∅
APP 09, King’s College London – p. 31/36

Eval in Code
def eval(sn: Snips) : Env = {

def eval_stmts(sts: Stmts, env: Env) : Env = sts match {
case Nil => env
case Label(l)::rest => eval_stmts(rest, env)
case Assign(x, e)::rest =>

eval_stmts(rest, env + (x -> eval_exp(e, env)))
case Jmp(b, l)::rest =>

if (eval_exp(b, env) == 1) eval_stmts(sn(l), env)
else eval_stmts(rest, env)

case Goto(l)::rest => eval_stmts(sn(l), env)
}

eval_stmts(sn(””), Map())
}

APP 09, King’s College London – p. 32/36

The Idea

a := 1
n := 5

top: jmp? n = 0 done
a := a * n
n := n + -1
goto top

done:

⇒
a := ’+’
n := ’+’

top: jmp? n = ’0’ done
a := a * n
n := n + ’-’
goto top

done:

Replace all constants and variables by either +, - or 0. What
we want to find out is what the sign of a and n is (they are
always positive).

APP 09, King’s College London – p. 33/36

Sign Analysis?

e1 e2 e1 + e2
- - -
- 0 -
- + -, 0, +
0 x x
+ - -, 0, +
+ 0 +
+ + +

e1 e2 e1 ∗ e2
- - +
- 0 0
- + -
0 x 0
+ - -
+ 0 0
+ + +

APP 09, King’s College London – p. 34/36

[n]env
def
=

{+} if n > 0
{−} if n < 0
{0} if n = 0

[x]env
def
= env(x)

[e1 + e2]env
def
= [e1]env ⊕ [e2]env

[e1 ∗ e2]env
def
= [e1]env ⊗ [e2]env

[e1 = e2]env
def
= {0,+}

def aeval_exp(e: Exp, aenv: AEnv) : Set[Abst] = e match {
case Num(0) => Set(Zero)
case Num(n) if (n < 0) => Set(Neg)
case Num(n) if (n > 0) => Set(Pos)
case Var(x) => aenv(x)
case Plus(e1, e2) =>

aplus(aeval_exp(e1, aenv), aeval_exp(e2, aenv))
case Times(e1, e2) =>

atimes(aeval_exp(e1, aenv), aeval_exp(e2, aenv))
case Equ(e1, e2) => Set(Zero, Pos)

}

APP 09, King’s College London – p. 35/36

Sign Analysis

We want to find out whether a and n are always
positive?
After a few optimisations, we can indeed find this
out.

if returns + or 0
branch into only one dircection if you know
if x is +, then x + -1 cannot be negative

What is this good for? Well, you do not need
underflow checks (in order to prevent
buffer-overflow attacks).

APP 09, King’s College London – p. 36/36

