Handout 9 (Static Analysis)

If we want to improve the safety and security of our programs, we need a more
principled approach to programming. Testing is good, but as Edsger Dijkstra
famously wrote:

“Program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.”

While such a more principled approach has been the subject of intense study for
a long, long time, only in the past few years some impressive results have been
achieved. One is the complete formalisation and (mathematical) verification of
a microkernel operating system called seL4.

http://sel4.systems

In 2011 this work was included in the MIT Technology Review in the annual
list of the world’s ten most important emerging technologies.! While this work
is impressive, its technical details are too enormous for an explanation here.
Therefore let us look at something much simpler, namely finding out properties
about programs using static analysis.

Static analysis is a technique that checks properties of a program without ac-
tually running the program. This should raise alarm bells with you—because
almost all interesting properties about programs are equivalent to the halting
problem, which we know is undecidable. For example estimating the memory
consumption of programs is in general undecidable, just like the halting prob-
lem. Static analysis circumvents this undecidability-problem by essentially al-
lowing answers yes and no, but also don’t know. With this “trick” even the halt-
ing problem becomes decidable...for example we could always say don't know.
Of course this would be silly. The point is that we should be striving for a
method that answers as often as possible either yes or no—just in cases when it
is too difficult we fall back on the don’t-know-answer. This might sound all like
abstract nonsense. Therefore let us look at a concrete example.

A Simple, Idealised Programming Language

Our starting point is a small, idealised programming language. It is idealised
because we cut several corners in comparison with real programming languages.
The language we will study contains, amongst other things, variables holding
integers. Using static analysis, we want to find out what the sign of these inte-
gers (positive or negative) will be when the program runs. This sign-analysis
seems like a very simple problem. But even such simple problems, if approached
naively, are in general undecidable, just like Turing’s halting problem. Ilet you
think why?

© Christian Urban, 2014
1 http://www2.technologyreview.com/tr10/?year=2011

http://sel4.systems
http://www2.technologyreview.com/tr10/?year=2011

Is sign-analysis of variables an interesting problem? Well, yes—if a compiler
can find out that for example a variable will never be negative and this variable
is used as an index for an array, then the compiler does not need to gener-
ate code for an underflow-check. Remember some languages are immune to
buffer-overflow attacks, but they need to add underflow and overflow checks
everywhere. According to John Regher, an expert in the field of compilers,
overflow checks can cause 5-10% slowdown, in some languages even 100% for
tight loops.? If the compiler can omit the underflow check, for example, then
this can potentially drastically speed up the generated code.

What do programs in our simple programming language look like? The
following grammar gives a first specification:

(Stmt) := (label) : (Exp) ==
| (oar) = (Exp)
| jmp? (Exp) (label)
| goto (label)
(Prog) == (Stmt) ... (Stmt)

(Exp) + (Exp)
| (Exp) * (Exp)
| (Exp) = (Exp)
S
| {

I assume you are familiar with such grammars.? There are three main syntactic
categories: statments and expressions as well as programs, which are sequences
of statements. Statements are either labels, variable assignments, conditional
jumps (jmp?) and unconditional jumps (goto). Labels are just strings, which
can be used as the target of a jump. We assume that in every program the la-
bels are unique—if there is a clash, then we do not know where to jump to. The
conditional jumps and variable assignments involve (arithmetic) expressions.
Expressions are either numbers, variables or compound expressions built up
from +, * and = (for simplicity reasons we do not consider any other opera-
tions). We assume we have negative and positive numbers, ...-2, -1, 0, 1, 2...
An example program that calculates the factorial of 5 is in our programming
language as follows:

1 a =1

2 n :=5

s top:

4 jmp? n = @ done
5 a :=a*n

6 n :=n+ -1

7 goto top

s done:

As can be seen each line of the program contains a statement. In the first two
lines we assign values to the variables a and n. Inline 4 we test whether n is zero,
in which case we jump to the end of the program marked with the label done.

2http://blog.regehr.org/archives/1154
Shttp://en.wikipedia.org/wiki/Backus-Naur_Form

http://blog.regehr.org/archives/1154
http://en.wikipedia.org/wiki/Backus–Naur_Form

ml := O
m2 :=1

loop:
jmp? n = @ done
tmp := m2
m2 :=ml + m2
ml := tmp
n :=n+ -1
goto top

done:

Figure 1: A mystery program in our idealised programming language. Try to
find out what it calculates!

If n is not zero, we multiply the content of a by n, decrease n by one and jump
back to the beginning of the loop, marked with the label top. Another program
in our language is shown in Figure 1. I let you think what it calculates.

Even if our language is rather small, it is still Turing complete —meaning
quite powerful. However, discussing this fact in more detail would lead us too
far astray. Clearly, our programming is rather low-level and not very comfort-
able for writing programs. It is inspired by real machine code, which is the
code that is executed by a CPU. So a more interesting question is what is miss-
ing in comparison with real machine code? Well, not much...in principle. Real
machine code, of course, contains many more arithmetic instructions (not just
addition and multiplication) and many more conditional jumps. We could add
these to our language if we wanted, but complexity is really beside the point
here. Furthermore, real machine code has many instructions for manipulating
memory. We do not have this at all. This is actually a more serious simpli-
fication because we assume numbers to be arbitrary small or large, which is
not the case with real machine code. In real code basic number formats have a
range and might over-flow or under-flow from this range. Also the number of
variables in our programs is potentially unlimited, while memory in an actual
computer, of course, is always limited somehow on any actual. To sum up,
our language might look ridiculously simple, but it is not far removed from
practically relevant issues.

An Interpreter

Designing a language is like playing god: you can say what names for variables
you allow; what programs should look like; most importantly you can decide
what each part of the program should mean and do. While our language is
quite simple and the meaning of statements, for example, is rather straightfor-
ward, there are still places where we need to make real choices. For example

consider the conditional jumps, say the one in the factorial program:
jmp? n = @ done

How should they work? We could introduce Booleans (true and false) and
then jump only when the condition is true. However, since we have numbers
in our language anyway, why not just encoding true as one, and false as zero?
In this way we can dispense with the additional concept of Booleans.

I hope the above discussion makes it already clear we need to be a bit more
careful with our programs. Below we shall describe an interpreter for our pro-
gramming language, which specifies exactly how programs are supposed to
be run...at least we will specify this for all good programs. By good programs
I mean where all variables are initialised, for example. Our interpreter will
just crash if it cannot find out the value for a variable when it is not initialised.
Also, we will assume that labels in good programs are unique, otherwise our
programs will calculate “garbage”.

First we will pre-process our programs. This will simplify the definition
of our interpreter later on. By pre-processing our programs we will transform
programs into snippets. A snippet is a label and all the code that comes after the
label. This essentially means a snippet is a map from labels to code.

Given that programs are sequences (or lists) of statements, we can easily cal-
culate the snippets by just traversing this sequence and recursively generating
the map. Suppose a program is of the general form

stmtq stmty ... stmty,

The idea is to go through this sequence of statements one by one and check
whether they are a label. If yes, we add the label and the remaining statements
to our map. If no, we just continue with the next statement. To come up with a
recursive definition for generating snippets, let us write [] for the program that
does not contain any statement. Consider the following definition:

snippets(]]) Ly

snippets(stmt rest) def {snzppets(rest)[label := rest] if stmt = label:

snippets(rest) otherwise

In the first clause we just return the empty map for the program that does not
contain any statement. In the second clause, we have to distinguish the case
where the first statement is a label or not. As said before, if not, then we just
“throw away” the label and recursively calculate the snippets for the rest of the
program. If yes, then we do the same, but also update the map so that label
now points to the rest of the statements. There is one small problem we need
to overcome: our two programs shown so far have no label as entry point —that
is where the execution is supposed to start. We usually assume that the first

“Be sure you know what maps are. In a programming context they are often represented as
association list where some data is associated with a key.

statement will be run first. To make this the default, it is convenient if we add
to all our programs a default label, say "" (the empty string). With this we can
define our pre-processing of programs as follows

preproc(prog) snzppets(1 prog)

Let us see how this pans out in practice. If we pre-process the factorial program
shown earlier, we obtain the following map:

E]H a :=1 top | — jmp? n = @ done »—> (]
n :=5 a = a n
top: n :=n+ -1
jmp? n = @ done goto top
a :=a*n done:
n:=n+ -1
goto top

done:

I highlighted the keys in this map. Since there are three labels in the factorial
program (remember we added ""), there are three keys. When running the
factorial program and encountering a jump, then we only have to consult this
snippets-map in order to find out what the next statements should be.

We should now be in the position to define how a program should be run. In
the context of interpreters, this “running” of programs is often called evaluation.
Let us start with the definition of how expressions are evaluated. A first attempt
might be the following recursive function:

) def n

eval_exp(n if n is a number like ...-2,-1,0,1, 2...

eval_exp(eq +e2) & eval _exp(e1) + eval_exp(e;)

eval_exp

ep* ez) ef eval _exp(eq) * eval_exp(ez)
def | 1 if eval_exp(e1) = eval_exp(ez)

(n
(
(
(

cval_exp(er =ez) = 0 otherwise

While this should look all relatively straightforward, still be very careful. There
is a subtlety which can be easily overlooked: The function eval_exp takes an ex-
pression of our programming language as input and returns a number as out-
put. Therefore whenever we have a number in our program, we just return this
number —this is defined in the first clause above. Whenever we encounter an
addition, well then we first evaluate the left-hand side e; of the addition (this
will give a number), then evaluate the right-hand side e, (this gives another
number), and finally add both numbers together. Here is the subtlety: on the

left-hand side of the &' we have a + (in the teletype font) which is the symbol
for addition in our programming language. On the right-hand side we have +
which stands for the arithmetic operation from “mathematics” of adding two
numbers. These are rather different concepts —one is a symbol (which we made

up), and the other a mathematical operation. When we will have alook at an ac-
tual implementation of our interpreter, the mathematical operation will be the
function for addition from the programming language in which we implement
our interpreter. While the + is just a symbol that is used in our programming
language. Clearly we have to use a symbol that is a good mnemonic for addi-
tion otherwise we will confuse the programmers working with our language.
Therefore we use +. A similar choice is made for times in the third clause and
equality in the fourth clause. Remember I wrote at the beginning of this section
about being god when designing a programming language. You can see this
here: we need to give meaning to symbols.

At the moment however, we are a poor fallible god. Look again at the gram-
mar of our programming language and our definition. Clearly, an expression
can contain variables. So far we have ignored them. What should our inter-
preter do with variables? They might change during the evaluation of a pro-
gram. For example the variable n in the factorial program counts down from
5 up to 0. How can we improve our definition above to give also an answer
whenever our interpreter encounters a variable in an expression? The solution
is to add an environment, written env, as an additional input argument to our
eval_exp function.

def . . .
eval_exp(n, env) =n if n is a number like ...-2,-1,0,1, 2...

(
eval_exp(eq + ey, env) def eval_exp(eq, env) + eval_exp(e,, env)
def
eval_exp(eq * ey, env) = eval_exp(eq, env) * eval_exp(e,, env)
(

¢ |1 if eval_exp(eq,env) = eval_exp(e,, env
eval_exp(ey = ez, env) 0 otherv_visz(v xplezent)

eval_exp(x, env) = env(x)

This environment env also acts like a map: it associates variable with their cur-
rent values. For example Stafter evaluating the first two lines in our factorial
program, such an environment might look as follows

[a]—1 [n]—5

Again I highlighted the keys. In the clause for variables, we can therefore con-
sult this environment and return whatever value is currently stored for this
variable. This is written env(x). If we query this map with x we obtain the
corresponding number. You might ask what happens if an environment does
not contain any value for, say, the variable x? Well, then our interpreter just
“crashes”, or more precisely will raise an exception. In this case we have a
“bad” program that tried to use a variable before it was initialised. The pro-
grammer should not have done this. In areal programming language we would
of course try a bit harder and for example give an error at compile time, or de-
sign our language in such a way that this can never happen. With the second
version of eval_exp we completed our definition for evaluating expressions.
Next comes the evaluation function for statements. We define this function
in such a way that we recursively evaluate a whole sequence of statements.

Assume a program p (you want to evaluate) and its pre-processed snippets sn.
Then we can define:

def

eval_stmts(][], env) = env

eval_stmts(label: rest,env) &of eval_stmts(rest, env)

eval_stmts(x :=e rest,env) oof eval_stmts(rest, env|x := eval_exp(e, env)])
eval_stmts(goto 1bl rest,env) & eval_stmts(sn(1bl), env)

eval_stmts(sn(1bl),env)
def

eval_stmts(jmp? e 1bl rest, env) if eval_exp(e,env) =1

eval_stmts(rest, env) otherwise

The first clause is for the empty program, or when we arrived at the end of the
program. In this case we just return the environment. The second clause is
for when the next statement is a label. That means the program is of the form
label: rest where the label is some string and rest stands for all following state-
ment. This case is easy, because our evaluation function just discards the label
and evaluates the rest of the statements (we already extracted all important in-
formation about labels when we pre-processed our programs and generated the
snippets). The third clause is for variable assignments. Again we just evaluate
the rest for the statements, but with a modified environment—since the vari-
able assignment is supposed to introduce a new variable or change the current
value of a variable. For this modification of the environment we first evaluate
the expression e using our evaluation function for expressions. This gives us
a number. Then we assign this number to the variable x in the environment.
This modified environment will be used to evaluate the rest of the program.
The fourth clause is for the unconditional jump to a label. That means we have
to look up in our snippets map sn what are the next statements for this label are.
Therefore we will continue with evaluating, not with the rest of the program,
but with the statements stored in the snippets-map under the label 1bl. The
fifth clause for conditional jumps is similar, but in order to make the jump we
first need to evaluate the expression e in order to find out whether it is 1. If yes,
we jump, otherwise we just continue with evaluating the rest of the program.

Our interpreter works in two stages: First we pre-process our program gen-
erating the snippets map sn, say. Second we call the evaluation function with
the default entry point and the empty environment:

eval_stmts(sn(""), @)

It is interesting to note that our interpreter when it comes to the end of the pro-
gram returns an environment. Our programming language does not contain
any constructs for input and output. Therefore this environment is the only ef-
fect we can observe when running the program (apart from that our interpreter
might need some time before finishing the evaluation of the program and the
CPU getting hot). Evaluating the factorial program with our interpreter we
receive as “answer”-environment

[a]+—120 [n]—o

While the discussion above should have illustrated the ideas, in order to do
some serious calculation we clearly need to implement the interpreter.

Code of the Interpreter

Functional programming languages are very convenient for implementations
of interpreters. A convenient choice for a functional programming language is
Scala. This is a programming language that combines functional and object-
oriented programming-styles. It has received in the last five years or so quite a
bit of attention. One reason for this attention is that, like the Java programming
language, Scala compiles to the Java Virtual Machine (JVM) and therefore Scala
programs can run under MacOSX, Linux and Windows.?> Unlike Java, how-
ever, Scala often allows programmers to write very concise and elegant code.
Some therefore say Scala is the much better Java. A number of companies, The
Guardian, Twitter, Coursera, FourSquare, LinkedIn to name a few, either use
Scala exclusively in production code, or at least to some substantial degree. If
you want to try out Scala yourself, the Scala compiler can be downloaded from

http://www.scala-lang.org

Static Analysis

Finally we can come back to our original problem, namely finding out what the
signs of variables are

5There are also experimental backends for Android and JavaScript.

http://www.scala-lang.org

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

abstract class Exp
abstract class Stmt

case class Plus(el: Exp, e2: Exp) extends Exp
case class Times(el: Exp, e2: Exp) extends Exp
case class Equ(el: Exp, e2: Exp) extends Exp
case class Num(n: Int) extends Exp

case class Var(x: String) extends Exp

case class Label(l: String) extends Stmt

case class Assign(x: String, e: Exp) extends Stmt
case class Goto(l: String) extends Stmt

case class Jmp(e: Exp, 1l: String) extends Stmt

type Stmts = List[Stmt]
type Env = Map[String, Int]
type Snips = Map[String, Stmts]

def preproc(sts: Stmts) : Snips = sts match {
case Nil => Map()
case Label(l)::rest => preproc(rest) + (1 -> rest)
case _::rest => preproc(rest)

}

def Prog(sts: Stmt*) = preproc(Label("")::sts.tolList)

def eval _exp(e: Exp, env: Env) : Int = e match {
case Var(x) => env(x)
case Num(n) => n
case Plus(el, e2) => eval_exp(el, env) + eval_exp(e2, env)
case Times(el, e2) => eval_exp(el, env) * eval _exp(e2, env)
case Equ(el, e2) =>
if (eval_exp(el, env) == eval_exp(e2, env)) 1 else ©

}

def eval(sn: Snips) : Env = {
def eval_stmts(sts: Stmts, env: Env): Env = sts match {

case Nil => env

case Label(l)::rest => eval_stmts(rest, env)

case Assign(x, e)::rest =>
eval stmts(rest, env + (x -> eval_exp(e, env)))

case Goto(l)::rest => eval_stmts(sn(l), env)

case Jmp(b, 1)::rest =>
if (eval_exp(b, env) == 1) eval_stmts(sn(l), env)
else eval_stmts(rest, env)

}
eval_stmts(sn(""), Map())

Figure 2: Bla
9

