Access Control and Privacy Policies (6)

Email: christian.urban at kcl.ac.uk

Office: S1.27 (1st floor Strand Building)

Slides: KEATS (also homework is there)

Access Control Logic

Formulas

```
F ::= true

| false

| F \wedge F

| F \vee F

| F \Rightarrow F

| p(t_1,...,t_n)

| P says F "saying predicate"
```

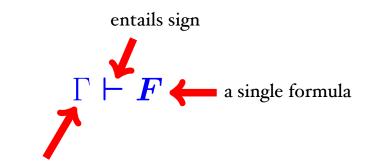
Judgements

$$\Gamma \vdash F$$

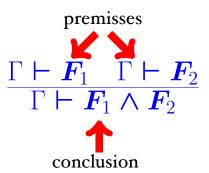
Judgements

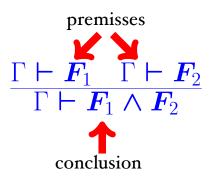
 $\Gamma \vdash F$

Judgements

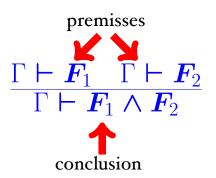


Gamma stands for a collection of formulas ("assumptions")





$$P$$
 says $F \vdash Q$ says $F \land P$ says G



$$\underbrace{P \operatorname{says} F}_{\Gamma} \vdash \underbrace{Q \operatorname{says} F}_{F_1} \land \underbrace{P \operatorname{says} G}_{F_2}$$

$$\frac{\Gamma, F \vdash F}{\Gamma \vdash F_1} \Rightarrow F_2 \quad \Gamma \vdash F_1 \\
\frac{\Gamma \vdash F_1 \Rightarrow F_2}{\Gamma \vdash F_2} \quad \frac{F_1, \Gamma \vdash F_2}{\Gamma \vdash F_1 \Rightarrow F_2} \\
\frac{\Gamma \vdash F}{\Gamma \vdash P \text{ says } F} \\
\frac{\Gamma \vdash P \text{ says } (F_1 \Rightarrow F_2) \quad \Gamma \vdash P \text{ says } F_1}{\Gamma \vdash P \text{ says } F_2}$$

Sending Messages

Alice sends a message m
 Alice says m

Sending Messages

• Alice sends a message *m*

Alice says m

• Alice sends an encrypted message m with key K $(\{m\}_K \stackrel{\text{def}}{=} K \Rightarrow m)$

Alice says $\{m\}_K$

Sending Messages

• Alice sends a message *m*

Alice says m

• Alice sends an encrypted message m with key K $(\{m\}_K \stackrel{\mathsf{def}}{=} K \Rightarrow m)$ Alice says $\{m\}_K$

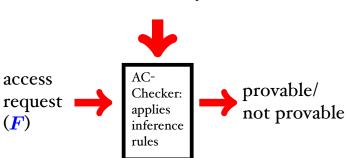
• Decryption of Alice's message

 $\frac{\Gamma \vdash \text{Alice says } \{m\}_K \quad \Gamma \vdash \text{Alice says } K}{\Gamma \vdash \text{Alice says } m}$

Proofs

The Access Control Problem

Access Policy (□)



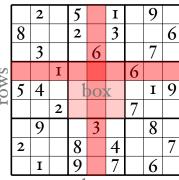
Proofs

axiom

goal

start

Sudoku



columns

- Row-Column: each cell, must contain exactly one number
- Row-Number: each row must contain each number exactly once
- Column-Number: each column must contain each number exactly once
- Box-Number: each box must contain each number exactly once

			7				5 9	8
	5	6	2	Ι	8	7	9	3
						Ι		
							8	Ι
			3	7	6			
9	6							
		5						
		4		2	Ι	8	3	
8	7				3			

single position rules

 $\frac{\{1..9\} - \{4\} \text{ in one row}}{4 \text{ in empty position}}$

			7				5	8
	5	6	2	Ι	8	7	9	3
						Ι		
							8	Ι
			3	7	6			
9	6							
		5						
		4		2	Ι	8	3	
8	7				3			

single position rules

$$\frac{\{1..9\} - \{4\} \text{ in one row}}{4 \text{ in empty position}}$$

$$\frac{\{1..9\} - \{x\} \text{ in one column}}{x \text{ in empty position}}$$

$$\frac{\{1..9\} - \{x\} \text{ in one box}}{x \text{ in empty position}}$$

			7			2	5	8
	5	6	2	Ι	8	7	9	8
						Ι	2	2
							8	Ι
			3	7	6			
9	6							
		5						
		4		2	Ι	8	3	
8	7				3			

candidate rules

 $\frac{X - \{x\} \text{ in one box} \quad X \subseteq \{1..9\}}{x \text{ candidate in empty positions}}$

			7			2	5	8
4	5	6	2	Ι	8	7	9	3
						Ι	2	2
							8	Ι
			3	7	6			
9	6							
		5						
		4		2	Ι	8	3	
8	7				3			

$$\frac{\{1..9\} - \{4\} \text{ in one row}}{4 \text{ in empty position}}$$

$$X - \{2\}$$
 in one box $X \subseteq \{1, 0\}$
2 candidate in empty positions

			7			2	5	8
4	5	6	2	Ι	8	7	9	3
						Ι	2	2
							8	Ι
			3	7	6			
9	6							
		5						
		4		2	Ι	8	3	
8	7				3			

$$\frac{\{1..9\} - \{4\} \text{ in one row}}{4 \text{ in empty position}}$$

$$X - \{2\}$$
 in one box $X \subseteq \{1, 2\}$ 2 candidate in empty positions

			7				5	8
	5	6	2	Ι	8	7	9	3
						Ι		
							8	Ι
			3	7	6			
9	6							2
		5						
		4		2	Ι	8	3	
8	7				3			

$$X - \{2\}$$
 in one box $X \subseteq \{1..9\}$
2 candidate

BTW

Are there sudokus that cannot be solved?

BTW

Are there sudokus that cannot be solved?

Ι	2	3	4	5	6	7	8	
								2
								3
								4
								5
								5 6
								7
								8
								9

Sometimes no rules apply at all....unsolvable sudoku.

Example Proof

7

 \overline{P} says $\overline{F_1} \wedge \overline{Q}$ says $\overline{F_2} \vdash \overline{Q}$ says $\overline{F_2} \wedge \overline{P}$ says $\overline{F_1}$

Example Proof

We have (by axiom)

(i)
$$P$$
 says $F_1 \wedge Q$ says $F_2 \vdash P$ says $F_1 \wedge Q$ says F_2

From (1) we get

- (2) P says $F_1 \wedge Q$ says $F_2 \vdash P$ says F_1
- (3) P says $F_1 \wedge Q$ says $F_2 \vdash Q$ says F_2

From (3) and (2) we get

$$P$$
 says $F_1 \wedge Q$ says $F_2 \vdash Q$ says $F_2 \wedge P$ says F_1

Done.

Other Direction

We want to prove

$$P$$
 says $F_1 \wedge Q$ says $F_2 \vdash Q$ says $F_2 \wedge P$ says F_1

We better be able to prove:

- (i) P says $F_1 \wedge Q$ says $F_2 \vdash Q$ says F_2
- (2) P says $F_1 \wedge Q$ says $F_2 \vdash P$ says F_1

For (I): If we can prove

$$P$$
 says $F_1 \wedge Q$ says $F_2 \vdash Q$ says $F_2 \wedge P$ says F_1

then (1) is fine. Similarly for (2).

 $\Gamma \vdash del_file$

$$\Gamma \vdash del_file$$

There is an inference rule

$$\frac{\Gamma \vdash \boldsymbol{F}}{\Gamma \vdash \boldsymbol{P} \operatorname{says} \boldsymbol{F}}$$

$$\Gamma \vdash del_file$$

There is an inference rule

$$\frac{\Gamma \vdash \boldsymbol{F}}{\Gamma \vdash \boldsymbol{P} \operatorname{says} \boldsymbol{F}}$$

So I can derive $\Gamma \vdash$ Alice says del_file.

$$\Gamma \vdash del_file$$

There is an inference rule

$$\frac{\Gamma \vdash \boldsymbol{F}}{\Gamma \vdash \boldsymbol{P} \text{ says } \boldsymbol{F}}$$

So I can derive $\Gamma \vdash$ Alice says del_file.

 Γ contains already Alice says del_file. So I can use the rule

$$\overline{\Gamma, F \vdash F}$$

Done. Qed.

$$\Gamma \vdash del_file$$

There is an inference rule

$$\frac{\Gamma \vdash \boldsymbol{F}}{\Gamma \vdash \boldsymbol{P} \text{ says } \boldsymbol{F}}$$

So I can derive $\Gamma \vdash$ Alice says del_file.

 Γ contains already Alice says del_file. So I can use the rule

$$\overline{\Gamma, F \vdash F}$$

What is wrong with this?

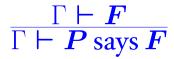
Done. Qed.

Program

How to prove $\Gamma \vdash F$?

$$\overline{\Gamma, F \vdash F}$$

$$\frac{\boldsymbol{F}_1, \Gamma \vdash \boldsymbol{F}_2}{\Gamma \vdash \boldsymbol{F}_1 \Rightarrow \boldsymbol{F}_2}$$



$$\frac{\Gamma \vdash \mathbf{F}_1}{\Gamma \vdash \mathbf{F}_1 \lor \mathbf{F}_2}$$

$$\frac{\Gamma \vdash \mathbf{F}_2}{\Gamma \vdash \mathbf{F}_1 \lor \mathbf{F}_2}$$

$$\frac{\Gamma \vdash \mathbf{F}_1 \quad \Gamma \vdash \mathbf{F}_2}{\Gamma \vdash \mathbf{F}_1 \land \mathbf{F}_2}$$

I want to prove $\Gamma \vdash Pred$

• I found that Γ contains the assumption $F_1 \Rightarrow F_2$

- I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- If I can prove $\Gamma \vdash \mathbf{F}_1$,

- **1** I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- If I can prove $\Gamma \vdash \mathbf{F}_1$, then I can prove $\Gamma \vdash \mathbf{F}_2$

$$\frac{\Gamma \vdash \mathbf{F}_1 \Rightarrow \mathbf{F}_2 \quad \Gamma \vdash \mathbf{F}_1}{\Gamma \vdash \mathbf{F}_2}$$

- I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- If I can prove $\Gamma \vdash \mathbf{F}_1$, then I can prove $\Gamma \vdash \mathbf{F}_2$
- So I am able to try to prove $\Gamma \vdash \text{Pred}$ with the additional assumption F_2 .

$$F_2, \Gamma \vdash \text{Pred}$$

Recall the following scenario:

- If Admin says that file should be deleted, then this file must be deleted.
- Admin trusts Bob to decide whether file should be deleted.
- Bob wants to delete file.

```
(Admin says del_file) ⇒ del_file,

Γ = (Admin says ((Bob says del_file) ⇒ del_file)),

Bob says del_file
```

 $\Gamma \vdash del_file$

• P is entitled to do F $P \text{ controls } F \stackrel{\text{def}}{=} (P \text{ says } F) \Rightarrow F$ $\frac{\Gamma \vdash P \text{ controls } F \quad \Gamma \vdash P \text{ says } F}{\Gamma \vdash F}$

Trusted Third Party

Simple protocol for establishing a secure connection via a mutually trusted 3rd party (server):

```
Message 1 A \rightarrow S: A, B
Message 2 S \rightarrow A: \{K_{AB}\}_{K_{AS}} and \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}}
Message 3 A \rightarrow B: \{K_{AB}\}_{K_{BS}}
Message 4 A \rightarrow B: \{m\}_{K_{AB}}
```

Sending Rule

$$\frac{\Gamma \vdash P \text{ says } F \quad \Gamma \vdash P \text{ sends } Q : F}{\Gamma \vdash Q \text{ says } F}$$

Sending Rule

$$\frac{\Gamma \vdash P \text{ says } F \quad \Gamma \vdash P \text{ sends } Q : F}{\Gamma \vdash Q \text{ says } F}$$

$$P \operatorname{sends} Q : F \stackrel{\text{def}}{=} (P \operatorname{says} F) \Rightarrow (Q \operatorname{says} F)$$

Trusted Third Party

```
A 	ext{ sends } S : 	ext{Connect}(A, B) \Rightarrow S 	ext{ says } (	ext{Connect}(A, B) \Rightarrow \{K_{AB}\}_{K_{AS}} \wedge \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}})
S 	ext{ sends } A : \{K_{AB}\}_{K_{AS}} \wedge \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}}
A 	ext{ sends } B : \{K_{AB}\}_{K_{AB}}
A 	ext{ sends } B : \{m\}_{K_{AB}}
```

Trusted Third Party

```
A 	ext{ sends } S : 	ext{Connect}(A, B) \Rightarrow \\ S 	ext{ says } (	ext{Connect}(A, B) \Rightarrow \\ \{K_{AB}\}_{K_{AS}} \wedge \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}} \} \\ S 	ext{ sends } A : \{K_{AB}\}_{K_{AS}} \wedge \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}} \\ A 	ext{ sends } B : \{K_{AB}\}_{K_{AB}} \\ A 	ext{ sends } B : \{m\}_{K_{AB}}
```

 $\Gamma \vdash \mathbf{B} \text{ says } \mathbf{m}$?

Public/Private Keys

• Bob has a private and public key: K_{Bob}^{pub} , K_{Bob}^{priv}

$$\frac{\Gamma \vdash \text{Alice says } \{m\}_{K_{Bob}^{pub}} \quad \Gamma \vdash K_{Bob}^{priv}}{\Gamma \vdash \text{Alice says } m}$$

Public/Private Keys

• Bob has a private and public key: K_{Bob}^{pub} , K_{Bob}^{priv}

$$\frac{\Gamma \vdash \text{Alice says } \{m\}_{K_{Bob}^{pub}} \quad \Gamma \vdash K_{Bob}^{priv}}{\Gamma \vdash \text{Alice says } m}$$

• this is **not** a derived rule!

Security Levels

- Top secret (TS)
- Secret (*S*)
- Public (*P*)

$$slev(P) < slev(S) < slev(TS)$$

Security Levels

- Top secret (TS)
- Secret (*S*)
- Public (P)

$$slev(P) < slev(S) < slev(TS)$$

- Bob has a clearance for "secret"
- Bob can read documents that are public or sectret, but not top secret

Bob controls Permitted (File, read)
Bob says Permitted (File, read)
Permitted (File, read)

```
slev(File) < slev(Bob) \Rightarrow
   Bob controls Permitted (File, read)

Bob says Permitted (File, read)

slev(File) < slev(Bob)

Permitted (File, read)
```

```
slev(\text{File}) < slev(\text{Bob}) \Rightarrow \\ \text{Bob controls Permitted (File, read)} \\ \text{Bob says Permitted (File, read)} \\ slev(\text{File}) = P \\ slev(\text{Bob}) = S \\ slev(P) < slev(S)
```

Permitted (File, read)

Substitution Rule

$$egin{aligned} \Gamma dash egin{aligned} slev(oldsymbol{P}) &= oldsymbol{l}_1 & \Gamma dash egin{aligned} slev(oldsymbol{Q}) &= oldsymbol{l}_2 & \Gamma dash oldsymbol{l}_1 < oldsymbol{l}_2 \ & \Gamma dash oldsymbol{slev}(oldsymbol{P}) < oldsymbol{slev}(oldsymbol{Q}) \end{aligned}$$

Substitution Rule

$$egin{aligned} \Gamma dash oldsymbol{slev}(oldsymbol{P}) = oldsymbol{l}_1 & \Gamma dash oldsymbol{slev}(oldsymbol{Q}) = oldsymbol{l}_2 & \Gamma dash oldsymbol{l}_1 < oldsymbol{l}_2 \ & \Gamma dash oldsymbol{slev}(oldsymbol{P}) < oldsymbol{slev}(oldsymbol{Q}) \end{aligned}$$

- slev(Bob) = S
- slev(File) = P
- ullet slev(P) < slev(S)

```
slev(File) < slev(Bob) \Rightarrow
   Bob controls Permitted (File, read)
Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
?
```

Permitted (File, read)

```
slev(File) < slev(Bob) \Rightarrow
   Bob controls Permitted (File, read)

Bob says Permitted (File, read)

slev(File) = P

slev(Bob) = TS

slev(P) < slev(S)

slev(S) < slev(TS)
```

Permitted (File, read)

Transitivity Rule

$$\frac{\Gamma \vdash \mathbf{l}_1 < \mathbf{l}_2 \quad \Gamma \vdash \mathbf{l}_2 < \mathbf{l}_3}{\Gamma \vdash \mathbf{l}_1 < \mathbf{l}_3}$$

- \bullet slev(P) < slev(S)
- $ullet \ slev(S) < slev(TS)$

$$slev(P) < slev(TS)$$

Reading Files

Access policy for reading

```
\forall f. \ slev(f) < slev(\mathsf{Bob}) \Rightarrow \\ \mathsf{Bob} \ \mathsf{controls} \ \mathsf{Permitted} \ (f, \mathsf{read}) \\ \mathsf{Bob} \ \mathsf{says} \ \mathsf{Permitted} \ (\mathsf{File}, \mathsf{read}) \\ slev(\mathsf{File}) = P \\ slev(\mathsf{Bob}) = TS \\ slev(P) < slev(S) \\ slev(S) < slev(TS) \\ \\ \mathsf{Permitted} \ (\mathsf{File}, \mathsf{read}) \\ \\ \mathsf{Permitted} \ (\mathsf{File}, \mathsf{read}) \\
```

Reading Files

Access policy for reading

```
\forall f. \ slev(f) \leq slev(\mathsf{Bob}) \Rightarrow \\ \mathsf{Bob} \ \mathsf{controls} \ \mathsf{Permitted} \ (f, \mathsf{read}) \\ \mathsf{Bob} \ \mathsf{says} \ \mathsf{Permitted} \ (\mathsf{File}, \mathsf{read}) \\ slev(\mathsf{File}) = \mathbf{TS} \\ slev(\mathsf{Bob}) = \mathbf{TS} \\ slev(P) < slev(S) \\ slev(S) < slev(TS) \\ \mathsf{Permitted} \ (\mathsf{File}, \mathsf{read}) \\ \\ \mathsf{Permitted} \ (\mathsf{File}, \mathsf{read}) \\
```

Writing Files

Access policy for writing

```
orall f. \ slev(\mathrm{Bob}) \leq slev(f) \Rightarrow \ \mathrm{Bob\ controls\ Permitted\ }(f,\mathrm{write})
\mathrm{Bob\ says\ Permitted\ }(\mathrm{File},\mathrm{write})
slev(\mathrm{File}) = TS
slev(\mathrm{Bob}) = S
slev(P) < slev(S)
slev(S) < slev(TS)
\mathrm{Permitted\ }(\mathrm{File},\mathrm{write})
```