Access Control and Privacy Policies (6)

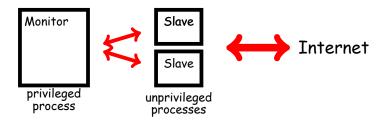
Email: christian.urban at kcl.ac.uk Office: S1.27 (1st floor Strand Building) Slides: KEATS (also homework is there)

• What are hashes and salts?

1st Week

- What are hashes and salts?
- ... can be use to store securely data on a client, but you cannot make your protocol dependent on the presence of the data

1st Week


- What are hashes and salts?
- ... can be use to store securely data on a client, but you cannot make your protocol dependent on the presence of the data
- ... can be used to store and verify passwords

- Buffer overflows
- choice of programming language can mitigate or even eliminate this problem

3rd Week

- defence in depth
- privilege separation afforded by the OS

4th Week

• voting... has security requirements that are in tension with each other

integrity vs ballot secrecy authentication vs enfranchisment

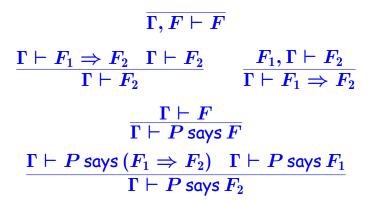
 electronic voting makes 'whole sale' fraud easier as opposed to 'retail attacks'

- access control logic
- formulas
- judgements
- inference rules

Access Control Logic

Formulas

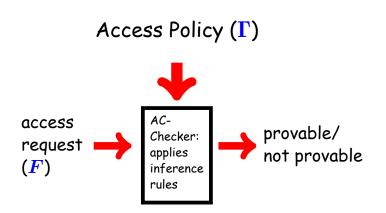
F ::= true | false | $F \land F$ | $F \lor F$ | $F \Rightarrow F$ | $p(t_1,...,t_n)$ | P says F


"saying predicate"

Judgements


 $\Gamma \vdash F$

APP 06, King's College London, 29 October 2012 - p. 7/26


Inference Rules

Proofs

The Access Control Problem

Recall the following scenario:

- If Admin says that file should be deleted, then this file must be deleted.
- Admin trusts Bob to decide whether file should be deleted.
- Bob wants to delete file.

(Admin says del_file) \Rightarrow del_file,

$$\label{eq:Gamma} \begin{split} \Gamma \mbox{ = } (\mbox{Admin says ((Bob says del_file)} \Rightarrow \mbox{del_file})), \\ \mbox{ Bob says del_file} \end{split}$$

 $\Gamma \vdash \mathsf{del}_\mathsf{file}$

How to prove $\Gamma \vdash F$?

$\overline{\Gamma, F \vdash F}$

APP 06, King's College London, 29 October 2012 - p. 12/26

$rac{F_1,\Gammadash F_2}{\Gammadash F_1 \Rightarrow F_1 \Rightarrow F_2}$

APP 06, King's College London, 29 October 2012 - p. 13/26

$\frac{\Gamma \vdash F}{\Gamma \vdash P \text{ says } F}$

APP 06, King's College London, 29 October 2012 - p. 14/26

$\frac{\Gamma \vdash F_1}{\Gamma \vdash F_1 \lor F_2} = \frac{\Gamma \vdash F_2}{\Gamma \vdash F_1 \lor F_2}$

APP 06, King's College London, 29 October 2012 - p. 15/26

$rac{\Gammadash F_1 \quad \Gammadash F_2}{\Gammadash F_1 \wedge F_2}$

APP 06, King's College London, 29 October 2012 - p. 16/26

() I found that Γ contains the assumption $F_1 \Rightarrow F_2$

() I found that Γ contains the assumption $F_1 \Rightarrow F_2$

2 If I can prove $\Gamma \vdash F_1$,

() I found that Γ contains the assumption $F_1 \Rightarrow F_2$

② If I can prove $\Gamma \vdash F_1$, then I can prove $\Gamma \vdash F_2$

$$rac{\Gammadash F_1 \Rightarrow F_2 \quad \Gammadash F_1}{\Gammadash F_2}$$

APP 06, King's College London, 29 October 2012 - p. 17/26

- () I found that Γ contains the assumption $F_1 \Rightarrow F_2$
- If I can prove Γ ⊢ F_1 , then I can prove Γ ⊢ F_2
- So better I try to prove $\Gamma \vdash \text{Pred}$ with the additional assumption F_2 .

 $F_2, \Gamma \vdash \mathsf{Pred}$

APP 06, King's College London, 29 October 2012 - p. 17/26

- P is entitled to do F P controls $F \stackrel{\text{def}}{=} (P \text{ says } F) \Rightarrow F$ $\frac{\Gamma \vdash P \text{ controls } F \quad \Gamma \vdash P \text{ says } F}{\Gamma \vdash F}$
- P speaks for Q $P \mapsto Q \stackrel{\text{def}}{=} \forall F.(P \text{ says } F) \Rightarrow (Q \text{ says } F)$ $\frac{\Gamma \vdash P \mapsto Q \quad \Gamma \vdash P \text{ says } F}{\Gamma \vdash Q \text{ says } F}$ $\frac{\Gamma \vdash P \mapsto Q \quad \Gamma \vdash Q \text{ controls } F}{\Gamma \vdash P \text{ controls } F}$

Protocol Specifications

The Needham-Schroeder Protocol:

 $\begin{array}{l} \text{Message 1} \quad A \to S : A, B, N_A \\ \text{Message 2} \quad S \to A : \{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_{BS}}\}_{K_{AS}} \\ \text{Message 3} \quad A \to B : \{K_{AB}, A\}_{K_{BS}} \\ \text{Message 4} \quad B \to A : \{N_B\}_{K_{AB}} \\ \text{Message 5} \quad A \to B : \{N_B - 1\}_{K_{AB}} \end{array}$

Trusted Third Party

Simple protocol for establishing a secure connection via a mutually trusted 3rd party (server):

 $\begin{array}{l} \text{Message 1} \quad A \to S : A, B\\ \text{Message 2} \quad S \to A : \{K_{AB}\}_{K_{AS}} \text{ and } \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}}\\ \text{Message 3} \quad A \to B : \{K_{AB}\}_{K_{BS}}\\ \text{Message 4} \quad A \to B : \{m\}_{K_{AB}}\end{array}$

Sending Messages

• Alice sends a message *m* Alice says *m*

Sending Messages

- Alice sends a message m
 Alice says m
- Alice sends an encrypted message m (with key K)

Alice says $\{m\}_K$

Sending Messages

- Alice sends a message m
 Alice says m
- Alice sends an encrypted message m (with key K)

Alice says $\{m\}_K$

• Decryption of Alice's message $\Gamma \vdash A$ lice says $\{m\}_K \quad \Gamma \vdash K$ $\Gamma \vdash A$ lice says m

Encryption

• Encryption of a message $rac{\Gamma dash extsf{Alice says } m \quad \Gamma dash K}{\Gamma dash extsf{Alice says } \{m\}_K}$

Public/Private Keys

• Bob has a private and public key: K_{Bob}^{pub} , K_{Bob}^{priv}

 $\frac{\Gamma \vdash \mathsf{Alice \ says} \ \{m\}_{K^{pub}_{Bob}} \quad \Gamma \vdash K^{priv}_{Bob}}{\Gamma \vdash \mathsf{Alice \ says} \ m}$

Public/Private Keys

• Bob has a private and public key: K_{Bob}^{pub} , K_{Bob}^{priv}

 $\frac{\Gamma \vdash \mathsf{Alice \ says} \ \{m\}_{K^{pub}_{Bob}} \quad \Gamma \vdash K^{priv}_{Bob}}{\Gamma \vdash \mathsf{Alice \ says} \ m}$

this is not a derived rule!

Trusted Third Party

- Alice calls Sam for a key to communicate with Bob
- Sam responds with a key that Alice can read and a key Bob can read (pre-shared)
- Alice sends the message encrypted with the key and the second key it recieved

Sending Rule

$\frac{\Gamma \vdash P \text{ says } F \quad \Gamma \vdash P \text{ sends } Q:F}{\Gamma \vdash Q \text{ says } F}$

APP 06, King's College London, 29 October 2012 - p. 25/26

Sending Rule

$\frac{\Gamma \vdash P \text{ says } F \quad \Gamma \vdash P \text{ sends } Q:F}{\Gamma \vdash Q \text{ says } F}$

 $P ext{ sends } Q : F \stackrel{\text{\tiny def}}{=} (P ext{ says } F) \Rightarrow (Q ext{ says } F)$

APP 06, King's College London, 29 October 2012 - p. 25/26

Trusted Third Party

 $\begin{array}{l} A \text{ sends } S : \text{Connect}(A,B) \\ S \text{ says } (\text{Connect}(A,B) \Rightarrow \\ \{K_{AB}\}_{K_{AS}} \land \{\{K_{AB}\}_{K_{BS}}\}_K_{AS}) \\ S \text{ sends } A : \{K_{AB}\}_{K_{AS}} \land \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}} \\ A \text{ sends } B : \{K_{AB}\}_{K_{BS}} \\ A \text{ sends } B : \{m\}_{K_{AB}} \end{array}$

Trusted Third Party

 $\begin{array}{l} A \text{ sends } S : \text{Connect}(A,B) \\ S \text{ says } (\text{Connect}(A,B) \Rightarrow \\ \{K_{AB}\}_{K_{AS}} \land \{\{K_{AB}\}_{K_{BS}}\}_K_{AS}) \\ S \text{ sends } A : \{K_{AB}\}_{K_{AS}} \land \{\{K_{AB}\}_{K_{BS}}\}_{K_{AS}} \\ A \text{ sends } B : \{K_{AB}\}_{K_{BS}} \\ A \text{ sends } B : \{m\}_{K_{AB}} \end{array}$

 $\Gamma dash B$ says m