
Access Control and
Privacy Policies (7)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

APP 07, King’s College London, 19 November 2013 – p. 1/32



Recall the following scenario:
If Admin says that file should be deleted, then
this file must be deleted.
Admin trusts Bob to decide whether file should
be deleted (delegation).
Bob wants to delete file.

Γ =
(Admin says del_file) ⇒ del_file,
(Admin says ((Bob says del_file) ⇒ del_file)),
Bob says del_file

Γ ⊢ del_file

APP 07, King’s College London, 19 November 2013 – p. 2/32



The Access Control Problem

..

access
request
(F ) .

provable/
not provable

.

AC-
Checker:
applies
inference
rules.

Access Policy (Γ)

APP 07, King’s College London, 19 November 2013 – p. 3/32



P says F means P can send a “signal” F through
a wire, or can make a “statement” F

P is entitled to do F

P controls F def
= (P says F ) ⇒ F

Γ ⊢ P controls F Γ ⊢ P says F
Γ ⊢ F

APP 07, King’s College London, 19 November 2013 – p. 4/32



P says F means P can send a “signal” F through
a wire, or can make a “statement” F

P is entitled to do F

P controls F def
= (P says F ) ⇒ F

Γ ⊢ P controls F Γ ⊢ P says F
Γ ⊢ F

APP 07, King’s College London, 19 November 2013 – p. 4/32



Security Levels

Top secret (TS)

Secret (S)

Public (P )

slev(P ) < slev(S) < slev(TS)

Bob has a clearance for “secret”

Bob can read documents that are public or sectret, but not
top secret

APP 07, King’s College London, 19 November 2013 – p. 5/32



Security Levels

Top secret (TS)

Secret (S)

Public (P )

slev(P ) < slev(S) < slev(TS)

Bob has a clearance for “secret”

Bob can read documents that are public or sectret, but not
top secret

APP 07, King’s College London, 19 November 2013 – p. 5/32



Reading a File

Bob controls Permitted (File, read)
Bob says Permitted (File, read)

Permitted (File, read)

APP 07, King’s College London, 19 November 2013 – p. 6/32



Reading a File

slev(File)< slev(Bob) ⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File)< slev(Bob)

Permitted (File, read)

APP 07, King’s College London, 19 November 2013 – p. 6/32



Reading a File

slev(File)< slev(Bob) ⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = S
slev(P ) < slev(S)

Permitted (File, read)

APP 07, King’s College London, 19 November 2013 – p. 6/32



Substitution Rule

Γ ⊢ slev(P ) = l1 Γ ⊢ slev(Q) = l2 Γ ⊢ l1 < l2
Γ ⊢ slev(P ) < slev(Q)

slev(Bob) = S

slev(File) = P

slev(P ) < slev(S)

APP 07, King’s College London, 19 November 2013 – p. 7/32



Substitution Rule

Γ ⊢ slev(P ) = l1 Γ ⊢ slev(Q) = l2 Γ ⊢ l1 < l2
Γ ⊢ slev(P ) < slev(Q)

slev(Bob) = S

slev(File) = P

slev(P ) < slev(S)

APP 07, King’s College London, 19 November 2013 – p. 7/32



Reading a File

slev(File)< slev(Bob) ⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
?

Permitted (File, read)

APP 07, King’s College London, 19 November 2013 – p. 8/32



Reading a File

slev(File)< slev(Bob) ⇒
Bob controls Permitted (File, read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

APP 07, King’s College London, 19 November 2013 – p. 8/32



Transitivity Rule

Γ ⊢ l1 < l2 Γ ⊢ l2 < l3
Γ ⊢ l1 < l3

slev(P ) < slev(S)

slev(S) < slev(TS)

slev(P ) < slev(TS)

APP 07, King’s College London, 19 November 2013 – p. 9/32



Reading Files
Access policy for Bob for reading

∀f. slev(f) < slev(Bob) ⇒
Bob controls Permitted (f , read)

Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

APP 07, King’s College London, 19 November 2013 – p. 10/32



Reading Files
Access policy for Bob for reading

∀f. slev(f) ≤ slev(Bob) ⇒
Bob controls Permitted (f , read)

Bob says Permitted (File, read)
slev(File) = TS
slev(Bob) = TS
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

APP 07, King’s College London, 19 November 2013 – p. 10/32



Writing Files
Access policy for Bob for writing

∀f. slev(Bob) ≤ slev(f) ⇒
Bob controls Permitted (f , write)

Bob says Permitted (File, write)
slev(File) = TS
slev(Bob) = S
slev(P ) < slev(S)
slev(S) < slev(TS)

Permitted (File, write)

APP 07, King’s College London, 19 November 2013 – p. 11/32



Encrypted Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ⊢ Alice says {m}K Γ ⊢ Alice says K

Γ ⊢ Alice says m

APP 07, King’s College London, 19 November 2013 – p. 12/32



Encrypted Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ⊢ Alice says {m}K Γ ⊢ Alice says K

Γ ⊢ Alice says m

APP 07, King’s College London, 19 November 2013 – p. 12/32



Encrypted Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ⊢ Alice says {m}K Γ ⊢ Alice says K

Γ ⊢ Alice says m

APP 07, King’s College London, 19 November 2013 – p. 12/32



Encryption

Encryption of a message
Γ ⊢ Alice says m Γ ⊢ Alice says K

Γ ⊢ Alice says {m}K

APP 07, King’s College London, 19 November 2013 – p. 13/32



Trusted Third Party

Simple protocol for establishing a secure
connection via a mutually trusted 3rd party
(server):

Message 1 A → S :A,B
Message 2 S → A : {KAB}KAS

and {{KAB}KBS
}KAS

Message 3 A → B : {KAB}KBS

Message 4 A → B : {m}KAB

APP 07, King’s College London, 19 November 2013 – p. 14/32



Sending Rule

Γ ⊢ P says F Γ ⊢ P sends Q : F

Γ ⊢ Q says F

P sends Q : F
def
=

(P says F ) ⇒ (Q says F )

APP 07, King’s College London, 19 November 2013 – p. 15/32



Sending Rule

Γ ⊢ P says F Γ ⊢ P sends Q : F

Γ ⊢ Q says F

P sends Q : F
def
=

(P says F ) ⇒ (Q says F )

APP 07, King’s College London, 19 November 2013 – p. 15/32



Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B) ⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ⊢ B says m?

APP 07, King’s College London, 19 November 2013 – p. 16/32



Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B) ⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ⊢ B says m?

APP 07, King’s College London, 19 November 2013 – p. 16/32



Public/Private Keys

Bob has a private and public key: Kpub
Bob, K

priv
Bob

Γ ⊢ Alice says {m}Kpub
Bob

Γ ⊢ Kpriv
Bob

Γ ⊢ Alice says m

this is not a derived rule!

APP 07, King’s College London, 19 November 2013 – p. 17/32



Public/Private Keys

Bob has a private and public key: Kpub
Bob, K

priv
Bob

Γ ⊢ Alice says {m}Kpub
Bob

Γ ⊢ Kpriv
Bob

Γ ⊢ Alice says m

this is not a derived rule!

APP 07, King’s College London, 19 November 2013 – p. 17/32



Sending Rule

Γ ⊢ P says F Γ ⊢ P sends Q : F

Γ ⊢ Q says F

P sends Q : F
def
=

(P says F ) ⇒ (Q says F )

APP 07, King’s College London, 19 November 2013 – p. 18/32



Sending Rule

Γ ⊢ P says F Γ ⊢ P sends Q : F

Γ ⊢ Q says F

P sends Q : F
def
=

(P says F ) ⇒ (Q says F )

APP 07, King’s College London, 19 November 2013 – p. 18/32



Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B) ⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ⊢ B says m?

APP 07, King’s College London, 19 November 2013 – p. 19/32



Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B) ⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ⊢ B says m?

APP 07, King’s College London, 19 November 2013 – p. 19/32



Challenge-Response
Protocol

an engine E and a transponder T share a key K

E sends out a nonce N (random number) to T

T responds with {N}K

if E receives {N}K from T , it starts engine

APP 07, King’s College London, 19 November 2013 – p. 20/32



Challenge-Response
Protocol

E says N (start)
E sends T : N (challenge)
(T says N) ⇒ (T sends E : {N}K∧

T sends E : Id(T )) (response)
T says K (key)
T says Id(T ) (identity)
(E says {N}K ∧ E says Id(T )) ⇒

start_engine(T ) (engine)

Γ ⊢ start_engine(T )?
APP 07, King’s College London, 19 November 2013 – p. 21/32



Exchange of a Fresh Key
A and B share a (“super-secret”) key KAB and
want to share another key
assumption KAB is only known to A and B

A sends B : A, {NA}KAB

B sends A : {NA + 1, NB}KAB

A sends B : {NB + 1}KAB

B sends A : {Knew
AB , Nnew

B }KAB

A sends B : {msg}Knew
AB

Assume Knew
AB is compromised by I

APP 07, King’s College London, 19 November 2013 – p. 22/32



Exchange of a Fresh Key
A and B share a (“super-secret”) key KAB and
want to share another key
assumption KAB is only known to A and B

A sends B : A, {NA}KAB

B sends A : {NA + 1, NB}KAB

A sends B : {NB + 1}KAB

B sends A : {Knew
AB , Nnew

B }KAB

A sends B : {msg}Knew
AB

Assume Knew
AB is compromised by I

APP 07, King’s College London, 19 November 2013 – p. 22/32



The Attack
An intruder I convinces A to accept the
compromised key Knew

AB

A sends B : A, {NA}KAB

B sends A : {NA + 1, NB}KAB

A sends B : {NB + 1}KAB

B sends A : {Knew
AB , Nnew

B }KAB
recorded by I

A sends B : A, {MA}KAB

B sends A : {MA + 1,MB}KAB

A sends B : {MB + 1}KAB

B sends I : {Knewer
AB , Nnewer

B }KAB
intercepted by I

I sends A : {Knew
AB , Nnew

B }KAB

A sends B : {msg}Knew
AB

I can read it also

APP 07, King’s College London, 19 November 2013 – p. 23/32



The Attack
An intruder I convinces A to accept the
compromised key Knew

AB

A sends B : A, {NA}KAB

B sends A : {NA + 1, NB}KAB

A sends B : {NB + 1}KAB

B sends A : {Knew
AB , Nnew

B }KAB
recorded by I

A sends B : A, {MA}KAB

B sends A : {MA + 1,MB}KAB

A sends B : {MB + 1}KAB

B sends I : {Knewer
AB , Nnewer

B }KAB
intercepted by I

I sends A : {Knew
AB , Nnew

B }KAB

A sends B : {msg}Knew
AB

I can read it also

APP 07, King’s College London, 19 November 2013 – p. 23/32



The Attack
An intruder I convinces A to accept the
compromised key Knew

AB

A sends B : A, {NA}KAB

B sends A : {NA + 1, NB}KAB

A sends B : {NB + 1}KAB

B sends A : {Knew
AB , Nnew

B }KAB
recorded by I

A sends B : A, {MA}KAB

B sends A : {MA + 1,MB}KAB

A sends B : {MB + 1}KAB

B sends I : {Knewer
AB , Nnewer

B }KAB
intercepted by I

I sends A : {Knew
AB , Nnew

B }KAB

A sends B : {msg}Knew
AB

I can read it also
APP 07, King’s College London, 19 November 2013 – p. 23/32



A Man-in-the-middle attack in real life:
the card only says yes or no to the terminal if the
PIN is correct
trick the card in thinking transaction is verified
by signature
trick the terminal in thinking the transaction was
verified by PIN

APP 07, King’s College London, 19 November 2013 – p. 24/32



Problems with EMV

it is a wrapper for many protocols
specification by consensus (resulted
unmanageable complexity)
its specification is 700 pages in English plus
2000+ pages for testing, additionally some
further parts are secret
other attacks have been found
one solution might be to require always online
verification of the PIN with the bank

APP 07, King’s College London, 19 November 2013 – p. 25/32



Problems with WEP (Wifi)
a standard ratified in 1999
the protocol was designed by a committee not
including cryptographers
it used the RC4 encryption algorithm which is a
stream cipher requiring a unique nonce
WEP did not allocate enough bits for the nonce
for authenticating packets it used CRC checksum
which can be easily broken
the network password was used to directly
encrypt packages (instead of a key negotiation
protocol)

encryption was turned off by default
APP 07, King’s College London, 19 November 2013 – p. 26/32



Protocols are Difficult
even the systems designed by experts regularly fail

try to make everything explicit (you need to
authenticate all data you might rely on)

the one who can fix a system should also be liable
for the losses

cryptography is often not the answer

logic is one way protocols are studied in academia
(you can use computers to search for attacks)

APP 07, King’s College London, 19 November 2013 – p. 27/32



Public-Key Infrastructure

the idea is to have a certificate authority (CA)
you go to the CA to identify yourself
CA: “I, the CA, have verified that public key
P pub

Bob belongs to Bob”

CA must be trusted by everybody
What happens if CA issues a false certificate?
Who pays in case of loss? (VeriSign explicitly
limits liability to $100.)

APP 07, King’s College London, 19 November 2013 – p. 28/32


