
Access Control and
Privacy Policies (7)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)
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Judgements

Γ ` F

Gamma
stands for a collection of formulas
(“assumptions”)

a single formula

entails sign

Gimel (Phoenician), Gamma (Greek), C and G (Latin), Gim (Arabic),
?? (Indian), Ge (Cyrillic)
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Inference Rules

Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

conclusion

premisses
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conclusion
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P saysF︸ ︷︷ ︸
Γ

` Q saysF︸ ︷︷ ︸
F1

∧P saysG︸ ︷︷ ︸
F2



Γ ` F1 ⇒ F2 Γ ` F1

Γ ` F2

Γ ` F
Γ ` P saysF
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Digression: Proofs in CS

Formal proofs in CS sound like science fiction?

Completely irrelevant!

in 2008, verification of a small C-compiler

in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)
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Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof about a
specification in a journal
(2005),∼31pages

Andrew Appel
(Princeton)

relied on their proof in a
security critical application
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Proof-Carrying Code
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Idea:

user:
untrusted

code

developer
—

web
server

proof-
checker

code

certificate
a proof
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Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h
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Mars Pathfinder Mission 1997

despite NASA’s famous testing procedure, the
lander crashed frequently on Mars
problem was an algorithm not used in the OS
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Trusted Third Party

Simple protocol for establishing a secure
connection via a mutually trusted 3rd party
(server):

Message 1 A→ S : A,B
Message 2 S → A : {KAB}KAS

and {{KAB}KBS
}KAS

Message 3 A→ B : {KAB}KBS

Message 4 A→ B : {m}KAB
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Encrypted Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ` Alice says {m}K Γ ` Alice saysK

Γ ` Alice says m
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Encryption

Encryption of a message
Γ ` Alice says m Γ ` Alice saysK

Γ ` Alice says {m}K
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Trusted Third Party
Alice calls Sam for a key to communicate with Bob
Sam responds with a key that Alice can read and
a key Bob can read (pre-shared)
Alice sends the message encrypted with the key
and the second key it recieved

A sends S : Connect(A,B)
S sends A : {KAB}KAS

and {{KAB}KBS
}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB
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Sending Rule

Γ ` P says F Γ ` P sends Q : F

Γ ` Q says F

P sendsQ : F
def
=

(P saysF )⇒ (Q saysF )
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Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B)⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ` B saysm?
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Challenge-Response Protocol

an engine E and a transponder T share a key K

E sends out a nonce N (random number) to T

T responds with {N}K

if E receives {N}K from T then starts engine
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Challenge-Response Protokol

E says N (start)
E sends T : N (challenge)
(T says N)⇒ (T sends E : {N}K∧

T sends E : Id(T )) (response)
T says K (key)
T says Id(T ) (identity)
(E says {N}K ∧ E says Id(T ))⇒

start_engine(T ) (engine)

Γ ` start_engine(T )?
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