
Access Control and
Privacy Policies (7)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

APP 07, King’s College London, 13 November 2012 – p. 1/17



Judgements

Γ ` F

Gamma
stands for a collection of formulas
(“assumptions”)

a single formula

entails sign

Gimel (Phoenician), Gamma (Greek), C and G (Latin), Gim (Arabic),
?? (Indian), Ge (Cyrillic)

APP 07, King’s College London, 13 November 2012 – p. 2/17



Judgements

Γ ` F

Gamma
stands for a collection of formulas
(“assumptions”)

a single formula

entails sign

Gimel (Phoenician), Gamma (Greek), C and G (Latin), Gim (Arabic),
?? (Indian), Ge (Cyrillic)

APP 07, King’s College London, 13 November 2012 – p. 2/17



Judgements

Γ ` F

Gamma
stands for a collection of formulas
(“assumptions”)

a single formula

entails sign

Gimel (Phoenician), Gamma (Greek), C and G (Latin), Gim (Arabic),
?? (Indian), Ge (Cyrillic)

APP 07, King’s College London, 13 November 2012 – p. 2/17



Inference Rules

Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

conclusion

premisses

APP 07, King’s College London, 13 November 2012 – p. 3/17



Inference Rules

Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

conclusion

premisses

APP 07, King’s College London, 13 November 2012 – p. 3/17

P saysF ` Q saysF ∧ P saysG



Inference Rules

Γ ` F1 Γ ` F2

Γ ` F1 ∧ F2

conclusion

premisses

APP 07, King’s College London, 13 November 2012 – p. 3/17

P saysF︸ ︷︷ ︸
Γ

` Q saysF︸ ︷︷ ︸
F1

∧P saysG︸ ︷︷ ︸
F2



Γ ` F1 ⇒ F2 Γ ` F1

Γ ` F2

Γ ` F
Γ ` P saysF

APP 07, King’s College London, 13 November 2012 – p. 4/17



Digression: Proofs in CS

Formal proofs in CS sound like science fiction?

Completely irrelevant!

in 2008, verification of a small C-compiler

in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)

APP 07, King’s College London, 13 November 2012 – p. 5/17



Digression: Proofs in CS

Formal proofs in CS sound like science fiction?
Completely irrelevant!

in 2008, verification of a small C-compiler

in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)

APP 07, King’s College London, 13 November 2012 – p. 5/17



Digression: Proofs in CS

Formal proofs in CS sound like science fiction?
Completely irrelevant!

in 2008, verification of a small C-compiler

in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)

200k loc of proof
25 - 30 person years
found 160 bugs in the C code (144 by the proof)

APP 07, King’s College London, 13 November 2012 – p. 5/17



Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof about a
specification in a journal
(2005),∼31pages

Andrew Appel
(Princeton)

relied on their proof in a
security critical application

APP 07, King’s College London, 13 November 2012 – p. 6/17



Bob Harper
(CMU)

Frank Pfenning
(CMU)

published a proof about a
specification in a journal
(2005),∼31pages

Andrew Appel
(Princeton)

relied on their proof in a
security critical application

APP 07, King’s College London, 13 November 2012 – p. 6/17



Proof-Carrying Code

APP 07, King’s College London, 13 November 2012 – p. 7/17

Idea:

user:
untrusted

code

developer
—

web
server

proof-
checker

code

certificate
a proof



Proof-Carrying Code

APP 07, King’s College London, 13 November 2012 – p. 7/17

Idea:

user:
untrusted

code

developer
—

web
server

proof-
checker

code

certificate
a proof



Proof-Carrying Code

APP 07, King’s College London, 13 November 2012 – p. 7/17

Idea:

user:
untrusted

code

developer
—

web
server proof-

checker

code

certificate
a proof



APP 07, King’s College London, 13 November 2012 – p. 8/17

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h



APP 07, King’s College London, 13 November 2012 – p. 8/17

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h



APP 07, King’s College London, 13 November 2012 – p. 8/17

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h



APP 07, King’s College London, 13 November 2012 – p. 8/17

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h



APP 07, King’s College London, 13 November 2012 – p. 8/17

Spec Proof Alg

1st
solution Spec+ex Proof Alg

2nd
solution Spec Proof Alg-ex

3rd
solution Spec Proof Alg

2h



Mars Pathfinder Mission 1997

despite NASA’s famous testing procedure, the
lander crashed frequently on Mars
problem was an algorithm not used in the OS

APP 07, King’s College London, 13 November 2012 – p. 9/17



Trusted Third Party

Simple protocol for establishing a secure
connection via a mutually trusted 3rd party
(server):

Message 1 A→ S : A,B
Message 2 S → A : {KAB}KAS

and {{KAB}KBS
}KAS

Message 3 A→ B : {KAB}KBS

Message 4 A→ B : {m}KAB

APP 07, King’s College London, 13 November 2012 – p. 10/17



Encrypted Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ` Alice says {m}K Γ ` Alice saysK

Γ ` Alice says m

APP 07, King’s College London, 13 November 2012 – p. 11/17



Encrypted Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ` Alice says {m}K Γ ` Alice saysK

Γ ` Alice says m

APP 07, King’s College London, 13 November 2012 – p. 11/17



Encrypted Messages

Alice sends a message m

Alice says m

Alice sends an encrypted message m
(with key K)

Alice says {m}K

Decryption of Alice’s message
Γ ` Alice says {m}K Γ ` Alice saysK

Γ ` Alice says m

APP 07, King’s College London, 13 November 2012 – p. 11/17



Encryption

Encryption of a message
Γ ` Alice says m Γ ` Alice saysK

Γ ` Alice says {m}K

APP 07, King’s College London, 13 November 2012 – p. 12/17



Trusted Third Party
Alice calls Sam for a key to communicate with Bob
Sam responds with a key that Alice can read and
a key Bob can read (pre-shared)
Alice sends the message encrypted with the key
and the second key it recieved

A sends S : Connect(A,B)
S sends A : {KAB}KAS

and {{KAB}KBS
}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

APP 07, King’s College London, 13 November 2012 – p. 13/17



Sending Rule

Γ ` P says F Γ ` P sends Q : F

Γ ` Q says F

P sendsQ : F
def
=

(P saysF )⇒ (Q saysF )

APP 07, King’s College London, 13 November 2012 – p. 14/17



Sending Rule

Γ ` P says F Γ ` P sends Q : F

Γ ` Q says F

P sendsQ : F
def
=

(P saysF )⇒ (Q saysF )

APP 07, King’s College London, 13 November 2012 – p. 14/17



Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B)⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ` B saysm?

APP 07, King’s College London, 13 November 2012 – p. 15/17



Trusted Third Party

A sends S : Connect(A,B)
S says (Connect(A,B)⇒

{KAB}KAS
∧ {{KAB}KBS

}KAS
)

S sends A : {KAB}KAS
∧ {{KAB}KBS

}KAS

A sends B : {KAB}KBS

A sends B : {m}KAB

Γ ` B saysm?

APP 07, King’s College London, 13 November 2012 – p. 15/17



Challenge-Response Protocol

an engine E and a transponder T share a key K

E sends out a nonce N (random number) to T

T responds with {N}K

if E receives {N}K from T then starts engine

APP 07, King’s College London, 13 November 2012 – p. 16/17



Challenge-Response Protokol

E says N (start)
E sends T : N (challenge)
(T says N)⇒ (T sends E : {N}K∧

T sends E : Id(T )) (response)
T says K (key)
T says Id(T ) (identity)
(E says {N}K ∧ E says Id(T ))⇒

start_engine(T ) (engine)

Γ ` start_engine(T )?
APP 07, King’s College London, 13 November 2012 – p. 17/17


