Access Control and
Privacy Policies (7)

Email: christian.urban at kcl.ac.uk
Office: S51.27 (1st floor Strand Building)
Slides: KEATS (also homework is there)

Judgements

I'-F

Judgements

entails sign

V4

' - F(—asingle formula

f

Gamma
stands for a collection of formulas
("assumptions”)

Judgements

entails sign

V4

' - F(—asingle formula

f

Gamma
stands for a collection of formulas
("assumptions”)

Gimel (Phoenician), Gamma (Greek), C and 6 (Latin), Gim (Arabic),
?? (Indian), Ge (Cyrillic)

Inference Rules

premisses

conclusion

Inference Rules

premisses

P says F' = Q says F' A\ P says G

Inference Rules

premisses

conclusion

P says F' = Q says F' A\ P says G
—_———— —\ NY—

N F F,

I'-Fy = F TI'FF

I' = Fy

' - F
I' = P says F

Digression: Proofs in CS

Formal proofs in CS sound like science fiction?

Digression: Proofs in CS

Formal proofs in CS sound like science fiction?
Completely irrelevant!

Digression: Proofs in CS

Formal proofs in CS sound like science fiction?
Completely irrelevant!

@ in 2008, verification of a small C-compiler

@ in 2010, verification of a micro-kernel operating
system (approximately 8700 loc)
@ 200k loc of proof
@ 25 - 30 person years
@ found 160 bugs in the C code (144 by the proof)

published a proof about a
specification in a journal
(2005), ~31pages

Y,

Bob Harper Frank Pfenning
(CMU) (CMUV)

77

Bob Harper Frank Pfenning

(CMU) (CMU)

Andrew Appel
(Princeton)

published a proof about a
specification in a journal
(2005), ~31pages

relied on their proof in a
security critical application

Proof-Carrying Code
Idea:

developer user:
__P untrusted
code

web
server

Proof-Carrying Code

Idea:

user:
untrusted
code

developer

web

server e
certificate

Proof-Carrying Code

Idea:
devel user:
eve_oper' code untrusted
code
web
server a proof
certificate proof -
checker

Proof Alg

(Spec Me{erect}=H4lg)
i Spec*|4{Proof [={ Alg v

(Spec Me{erect}=H4lg) 9
i Spec*|4{Proof [={ Alg
21, (Spec (oot FH{Ag™

\' 4
51| Spec™ e{Proof j=p{ Alg
2, Proof j=p{ Alg™
somon Alg

Mars Pathfinder Mission 1997

@ despite NASA's famous testing procedure, the
lander crashed frequently on Mars

@ problem was an algorithm not used in the OS

Trusted Third Party

Simple protocol for establishing a secure
connection via a mutually frusted 3rd party
(server):

Messagel A — S:A,B

Message 2 S— A :{KAB}KAS and {{KAB}KBS}KAS
Message 3 A — B : {K B}k,

Message 4 A — B :{m}k,,

Encrypted Messages

@ Alice sends a message m
Alice says m

Encrypted Messages

@ Alice sends a message m
Alice says m

@ Alice sends an encrypted message m
(with key K)
Alice says {m}x

Encrypted Messages

@ Alice sends a message m
Alice says m

@ Alice sends an encrypted message m
(with key K)
Alice says {m}x

@ Decryption of Alice's message
I' - Alice says {m}k T F Alicesays K

I' = Alice says m

Encryption

@ Encryption of a message
I' = Alice says m T I Alice says K

I' - Alice says {m}k

Trusted Third Party

@ Alice calls Sam for a key to communicate with Bob

@ Sam responds with a key that Alice can read and
a key Bob can read (pre-shared)

@ Alice sends the message encrypted with the key
and the second key it recieved

A sends S
S sends A
A sends B
A sends B

Connect(A, B)

{KaB}k,s and {{KaB}Kps}Kas
{KAB}KBS

{m}KAB

Sending Rule

I'-Psays F T PsendsQ: F
I' - Q says F

Sending Rule

I'-Psays F T PsendsQ: F

I' - Q says F

def

Psends@Q : F =
(Psays F') = (Qsays F)

Trusted Third Party

A sends S : Connect(A, B)
S says (Connect(A, B) =
{KAB}KAS A {{KAB}KBS}KAS)

Ssends A: {Kap}ras N {{KaB}Kps}Kas
Asends B: {Kap}tk,,

Asends B: {m}k,,

Trusted Third Party

A sends S : Connect(A, B)
S says (Connect(A, B) =
{KAB}KAS A {{KAB}KBS}KAS)

Ssends A: {Kap}ras N {{KaB}Kps}Kas
Asends B: {Kap}tk,,

Asends B: {m}k,,

I' = B says m?

Challenge-Response Protocol

@ an engine E and a tfransponder 1" share a key K
@ F sends out a nonce N (random number) to T
@ T responds with { N } x

@ if E receives {IN } k from T then starts engine

Challenge-Response Protokol

E says N (start)
E sendsT : N (challenge)
(T says N) = (T sends E : {N } A
T sends E : Id(T")) (response)
T says K (key)
T says Id(T) (identity)
(E says {N}k A E says Id(T)) =
start_engine(T') (engine)

I' - start_engine(T')?

