
Homework 4, Question 8
“I have no special talents.

I am only passionately curious.”
—Albert Einstein

Many students seem to have extremedifficultieswith this question. While it can
be solved with just logical reasoning, it seems to me like learning swimming on
dry land. Why not trying out what an actual UNIX system has to say? Seems
obvious isn’t it? ;o)

Environment
I know at least three ways of how to set up a testing environment without af-
fecting my main computer, and which should work regardless of whether you
have a Windows, MacOSX or Linux machine:

1. You can download Oracle’s VirtualBox

https://www.virtualbox.org

There are binaries for Windows and MacOSX (I only tried out MacOSX).
In addition, you need to download a Linux distribution. I used a recent
iso-file of an Ubuntu distribution. All components are free.

2. If you happen to have a Raspberry Pi laying around (I have two for play-
ing music as well as for all sorts of rainy-afternoon distractions). The
cheapest model of a Raspberry Pi costs around £20. You also need an SD
memory card of at least 4GB, which can be bought for £5 or less. Some
SD cards come pre-installed with Linux, but all can be easily loaded with
Linux. The good thing about Raspberry Pi’s is that despite theirminiature
size and small cost, they are full-fledged Linux computers…exactly what
is needed for such experiments. There are plenty Linux distributions on
the Net that are tailored to work “out of the box” with Raspberry Pi’s.

3. If you have a spare memory stick laying around, you can try out any of
the live USB-versions of Linux.

https://en.wikipedia.org/wiki/Live_USB

The idea is to upload Linux on the USB stick, you plug it into your com-
puter and boot up a Linux system without having to download anything
to your computer. A notable live USB version of Linux is called Tails

https://tails.boum.org

1

https://www.virtualbox.org
https://en.wikipedia.org/wiki/Live_USB
https://tails.boum.org


which comes with Tor pre-installed and is for people who need a maxi-
mum of privacy and anonymity (whistleblowers, dissidents). It is being
said that journalists Laura Poitras and Glenn Greenwald used it when
talking to Edward Snowden. Tails gives them anonymity even if their
main system is compromised bymalicious software, for example installed
by the NSA.
However, a live USB Linux will need some support from the computer
(BIOS) where you plug in the USB stick. I know Apple computers are a
bit “special”with this andwould need a 3rd-party boot loader for loading
operating systems from an USB memory stick.
An alternative is to burn a CD/DVD with a live Linux distribution. But
perhaps CDs/DVDs are already obsolete technology not available to ev-
eryone. The point is that loading an operating system from such a media
is/was much beĴer supported by various computers.

For my experiments below, I used option 2. In earlier versions of this module
I have used option 1. I have not tried in a while option 3, but know that in the
past I had a dedicated bootloader on an Apple computer just for the purpose of
running operating systems from external disks. I also for a long time had spare
CDs laying around just for the purpose that my (Linux) operating system got
trashed enough so that it had to be rebooted externally.

Setup
Once you have Linux up and running, there are a few commands you need to
know in order to replicate the ownerships and permissions from the question:

• useradd creates a new user

• groupadd creates a new group

• adduser adds a user to a group

• chmod changes the permissions of a file

• chown, chgrp change the ownership and group of a file

There is also a choice to be made what to use as microedit. If you do not want
to make your hands dirty and write a test program yourself, I recommended to
use the editors vi or vim, which is available on preĴymuch everyUNIX system.
For a first try out, this is a helpful choice for solving the question. However, it
has a disadvantage: it will always assume you have read permissions to a file.
To use these editors, I made a copy of them and renamed them to microedit.
Be careful to set the setuid bit for microedit.

2



Permission Basics
The absolute basics is how the permissions are organised in essentially four
blocks

-︸︷︷︸
directory

---︸ ︷︷ ︸
user

---︸ ︷︷ ︸
group

---︸ ︷︷ ︸
other

This seems to be the knowledge everybody has. But already difficulties arise
with the following fact, which could easily be resolved by a liĴle experiment:
assume a file is owned by Bob with permissions

-r--rw-rwx bob students file_name

The UNIX access rules imply that Bob will only have read access to this file,
even if he is in the group students and the group access permissions allow read
and write. Similarly every member in the students group who is not Bob, will
only have read-write access permissions, not read-write-execute.

The question asked whether Ping, Bob and Emma can read or write the
given files using the program microedit. This means we will call on the com-
mand line

> microedit file_name

for all files and for Bob, Ping andEmma. So if youwant to find outwhether Bob,
say, can read or write a file, you need to find out what the access permissions
withwhich microedit is run. Thiswould be easy, if microeditdid not have the
setuid bit set. Then it would be just the rights of the caller (Ping, Bob or Emma).
But your friendly lecturer arranged the question so that it has the setuid bit.

Recall that the setuid bit gives the program the ability to run with the per-
missions of the owner microedit file, not the permissions of the caller. I wrote
in the handout

“The fundamental idea behind the setuid aĴribute is that a file will be able
to run not with the callers access rights, but with the rights of the owner
of the file.”

Something similar is wriĴen in the Wikipedia entry for setuid

http://en.wikipedia.org/wiki/Setuid

This implies for deciding whether file is readable or writable is not determined
by the caller, but by the permissions with which microedit runs. As youmight
know already, and can also see in the Figure 1 shown later, any file_name given
on the command line will be handed over to microedit as string. It is the “re-
sponsibility” of microeditwhat to do with it.

There is one caveat however: We need to find out first whether the caller
(Bob, Ping or Emma) can actually run microedit—that is has execute permis-
sions for microedit. Once microedit runs, it will assume the permissions of

3

http://en.wikipedia.org/wiki/Setuid


the owner of microedit. The question is now whether these permissions are
sufficient to read or write the file file_name. The hints so far should already be
useful for answering the first three columns.

For the other two files we have to take into account that they are inside a
directory. For directories apply special access rules. In the handout I wrote

“There are already some special rules for directories and links. If the ex-
ecute aĴribute of a directory is not set, then one cannot change into the
directory and one cannot access any file inside it. If the write aĴribute is
not set, then one can change existing files (provide they are changeable),
but one cannot create new files. If the read aĴribute is not set, one cannot
search inside the directory (ls -la does not work) but one can access an
existing file, provided one knows its name.”

With this also the last two columns can be filled in.

Advanced Permissions
While all hints so far should get you very close to the intended answers, there
is one further complication arising from the setuid bit. The question asked:

…whether Ping, Bob, or Emma are able to obtain the right to read (R) or
replace (W) its contents using the editor microedit.

Note the underlined phrase. That means we need to ensure that there is no
other way for Bob, Ping and Emma to obtain reading or writing permissions
with microedit. Actually there is. Any file that has the setuid bit set will be
called with the permissions of the owner, but once it has done the work, it can
“lower” the permissions again to the callers rights. This is a second possibility
we have to check whether the files become readable or writable when the per-
missions of the caller are re-instated. In the handout I wrote about the setuid-
program passwd:

“As an example consider again the passwd program. When started by, say
the user foo, it has at the beginning the identities:

• real identity: foo
effective identity: foo
saved identity: root

It is then allowed to change the effective identity to the saved identity to
have

• real identity: foo
effective identity: root
saved identity: root

4



It can now read and write the file /etc/passwd. After finishing the job it
is supposed to drop the effective identity back to foo. This is the respon-
sibility of the programmers who wrote passwd. Notice that the effective
identity is not automatically elevated to root, but the program itself must
make this change. After it has done the work, the effective identity should
go back to the real identity. ”

It was hoped by your friendly lecturer that any of the students would have
consciously considered this possibility, but alas nobody did…

A Program in C
I suggested above to use a copy of the editors vm or vim for microedit. This
works reasonably well, except for one instance: if a file is not readable, then
these editorswill not be helpful for checkingwhether the file iswritable. Giving
out such a permission is a perfectly “normal” situation in many large UNIX
systems. A user might be allowed to write into central log files, but should not
be able to read them (otherwise they can find out what other users did). To
get around this problem, I brushed up my C knowledge from school days and
googled around for how to read and write files. Typing in “read write in C” in
the all-knowing search engine, I obtained the link

https://www.cs.bu.edu/teaching/c/file-io/intro/

which tells you preĴy much everything what there is about opening a file in
C for reading and writing. (There are certainly more and beĴer sources for
finding out how to read and write files. This was just in my finger tips.) A liĴle
bit more googling helped me to display the user that determines the access
permissions. Being lazy, I did not spend a thought of refactoring the file to be
as small as possible, and also did not go the extra mile to convert the ID of the
user into a clear name.

The resulting liĴle C program is shown in Figure 1. It explicitly checks for
readability and writability of files. The main function is organised into two
parts: the first checks readability and writability with the permissions accord-
ing to a potential setuid bit, and the second (starting in Line 34) when the per-
missions are lowered to the caller. Note that this program has one problem as
well: it only gives a reliable answer in cases a file is not readable or notwritable
when it returns an error code 13 (permission denied). It sometimes claims a file
is not writable, say, but with an error code 26 (text file busy). This is unrelated
to the permissions of the file.

5

https://www.cs.bu.edu/teaching/c/file-io/intro/


1 #include <stdio.h>
2 #include <unistd.h>
3 #include <errno.h>
4

5 FILE *f; //file pointer
6

7 //tests return errno = 13 for permission denied
8 void read_test(char *name)
9 {
10 if ((f = fopen(name, "r")) == NULL) {
11 printf("%s is not readable, errno = %d\n", name, errno);
12 } else {
13 printf("%s is readable\n", name); fclose(f);
14 }
15 }
16

17 void write_test(char *name)
18 {
19 if ((f = fopen(name, "r+")) == NULL) {
20 printf("%s is not writable, errno = %d\n", name, errno);
21 } else {
22 printf("%s is writable\n", name); fclose(f);
23 }
24 }
25

26 int main(int argc, char *argv[])
27 {
28 printf("Real UID = %d\n", getuid());
29 printf("Effective UID = %d\n", geteuid());
30

31 read_test(argv[1]);
32 write_test(argv[1]);
33

34 //lowering the access rights to the caller
35 if (setuid(getuid())) {
36 printf("could not reset setuid, errno = %d\n", errno);
37 return 1;
38 }
39

40 printf("Real UID = %d\n", getuid());
41 printf("Effective UID = %d\n", geteuid());
42

43 read_test(argv[1]);
44 write_test(argv[1]);
45

46 return 0;
47 }

Figure 1: A read/write test program in C. It returns errno = 13 in cases when
permission is denied.

6


