Access Control and
Privacy Policies (6)

Email: christian.urban at kcl.ac.uk
Office: Sr.27 (st floor Strand Building)
Slides: KEATS (also homework is there)

Access Control Logic

Formulas

F

= true
| false

| FAF

| FVF

| F=F

| p (tl,...,tn)

| PsaysF “saying predicate”

Judgements
I'=F

Judgements

' F

Judgements

entails sign

V4

'+ F e a single formula

’

Gamma
stands for a collection of formulas
(“assumptions”)

Inference Rules

premisses
Y N

' = F

I' = Fy

'+ F) N\ F,

conclusion

Inference Rules

premisses
W N
F = F

I’
= Fy A\ Fy

[' -
I’

conclusion

P says F' = Qsays F A\ Psays G

Inference Rules

premisses
W N
F = F

I’
= Fy A\ Fy

' -
I’
conclusion

P says F' = Q says F' A\ Psays G
—_——— —— N——

r F Fy

Sending Messages

o Alice sends a message m
Alice says m

Sending Messages

o Alice sends a message m
Alice says m

o Alice sends an encrypted message m
(with key K)

Alice says {m}k

Sending Messages

o Alice sends a message m
Alice says m

o Alice sends an encrypted message m
(with key K)

Alice says {m}k

e Decryption of Alice’s message
I' - Alice says {m}x I F Alicesays K

I' = Alice says m

Inference Rules

I'SsF+=F
I'EFy=F, I'EF F,I' - F
I' = F, I'EF = F
I'EF
I' = Psays F'

I' - Psays (Fy = F>) 'tk Psays Fi
I' = P says F,

Proofs

TFF

The Access Control
Problem

Access Policy (I')

¥

acCcess AC-

request é Checker: é provable/
applies not provable
(F) inference p

rules

T

axiom

Proofs

. goal

start

TOWS

Sudoku

S I 9 @ Row-Column: each cell,
Py 3 6 must contain exactly one
6 7 number
. 6 @ Row-Number: each row
hox 19 must contain each number
7 exactly once
3 8
S| 4 7 ©@ Column-Number: each
9| 17] |6 column must contain each
columns number exactly once

© Box-Number: each box
must contain each number
exactly once

Solving Sudokus

518
6|2|1/8]|7|9|3
I single position rules
8|1
716 {1..9} — {4} in one row
4 in empty position
51 (3
4] |2|1|8]3
3

Solving Sudokus

518
6[2]1/8[7]9]3
81
716
51 13
4] |2]1|8]3

single position rules

{1..9} — {4} in one row
4 in empty position

{1..9} — {x} in one column

Z in empty position

{1..9} — {z} in one box
T in empty position

Solving Sudokus

58

612|1/8[7]9|3
I112]-| candidate rules
81
716 .
X — {z} inonebox X C {1..9}

5T 13 x candidate in empty positions
4 |2]1]8)3

Solving Sudokus

P
o

ol v [\O [\

=l AN e)

{1..9} — {4} in one row ’

716 4 in empty position
5T 13 X — {2} inonebox X C {1$
4] |2]1(8]3 2 candidate in empty position

Solving Sudokus

58
612/1/8(7]9|3
I|2|2
81| {1..9} — {4} in one row
716 4 in empty position
sT 13 X — {2} inonebox X C {1i‘
4] |2]1(8]3 2 candidate in empty position

Solving Sudokus

W |Co

§/1] X — {2} inonebox X C {1..9}

716 2 candidate
2 4

ENG S

Sudoku

Are there sudokus that cannot be solved?

Sudoku

Are there sudokus that cannot be solved?

I102/3[(4/5/6]7]8

O (0O J|O\ [V | [W| N

Sometimes no rules apply at all....unsolvable
sudoku.

Example Proof

(?

P says F1 N\ Q says F, = Q says F; A P says F}

Example Proof

We have (by axiom)
() P says F; A Q says F» = P says Fi A Q says F
From (1) we get

(2) P says Fi A Q says Fy = P says Fi
(3) P says Fi A Q says F, - Q says F

From (3) and (2) we get
P says F1 N\ Q says F, = Q says F; A P says Fy

Done.

Other Direction

We want to prove
P says F1 N\ Q says F, = Q says F, A P says Fy
We better be able to prove:

() P says Fi A Q says F, - Q says Fy
(2) P says Fi A Q says Fy = P says Fi

For (D): If we can prove
P says F1 N\ Q says F, = Q says F, A\ P says Fy

then (1) is fine. Similarly for (2).

I want to prove

I' - del_file

I want to prove
I' = del_file

There is an inference rule

' F
I' = Psays F'

I want to prove
I' - del_file

There is an inference rule

' F
I' = Psays F'

So I can derive I' = Alice says del_file.

I want to prove
I' - del_file

There is an inference rule

' F
I' = Psays F'

So I can derive I' = Alice says del_file.

I" contains already Alice says del_file.
So I can use the rule

T,FFF

Done. Qed.

I want to prove
I' - del_file

There is an inference rule

' F
I' = Psays F'

So I can derive I' = Alice says del_file.

I" contains already Alice says del_file.
So I can use the rule

T,FFF

What is wrong with this?

Done. Qed.

Recall the following scenario:
o If Admin says that file should be deleted, then
this file must be deleted.

@ Admin trusts Bob to decide whether file should
be deleted.

e Bob wants to delete file.

(Admin says del_file) = del_file,
I' = (Admin says ((Bob says del_file) = del_file)),
Bob says del_file

I' - del_file

How to prove I' = F7?

ILFFF

F,T+ F

'+ F, = E

I'=F

[' = Psays F

- E
F"Fl I’ 2

F|_F1\/F2 F|_F1VF2

I'-F TI'EF

' Fy N\ F,

I want to prove I' - Pred

I want to prove I' - Pred

@ I found that I' contains the assumption F; = F;

I want to prove I' - Pred

@ I found that I' contains the assumption F; = F;

@ IfI can prove I' - Fi,

I want to prove I' - Pred

@ I found that I' contains the assumption F; = F;

@ IfI can prove [' = F}, then I can prove
I' = F

I'-F=F, T'HF
'+ F,

I want to prove I' - Pred

@ I found that I' contains the assumption F; = F;

@ IfI can prove [' = F}, then I can prove
I' = F

@ So better I try to prove [- Pred with the
additional assumption F5.

F,, T F Pred

e P is entitled to do F'
P controls F & (Psays F) = F

I' = Pcontrols F I' = Psays F’
I'-F

e P speaks for Q
P — Q ¥ VF.(Psays F) = (Qsays F)
I'FP—Q TI'F PsaysF
I' = Qsays F

'-P+— Q T+ Qcontrols F
I' = P controls F'

Protocol Specifications

The Needham-Schroeder Protocol:

Message1 A —+ S :A,B,Ny

Message2 S — A :{Na, B, Kap, {KaB, A}Kus} Kas
Message3 A — B :{Kap, A}k,

Message 4 B — A : {NB} k.5

Message 5 A — B : {Np — 1}k,

Trusted Third Party

Simple protocol for establishing a secure
connection via a mutually trusted 3rd party
(server):

Message1 A — S :A,B

Message2 S — A :{Kap}r,s and {{KaB}kys}Kas
Message3 A — B :{KaB}Kkps

Message 4 A — B : {m}k,,

Sending Messages

o Alice sends a message m
Alice says m

Sending Messages

o Alice sends a message m
Alice says m

o Alice sends an encrypted message m
(with key K)

Alice says {m}k

Sending Messages

o Alice sends a message m
Alice says m

o Alice sends an encrypted message m
(with key K)

Alice says {m}k

e Decryption of Alice’s message
I' - Alice says {m}x I F Alicesays K

I' = Alice says m

Encryption

e Encryption of a message
I' = Alice says m I' = Alice says K

I' - Alice says {m}x

Public/Private Keys

o Bob has a private and public key: K% K™

[Alice says {m}gpw [- K&

Bob

I' - Alice says m

Public/Private Keys

o Bob has a private and public key: K% K™

[Alice says {m}gpw [- K&

Bob

I' - Alice says m

o this is not a derived rule!

Trusted Third Party

e Alice calls Sam for a key to communicate with
Bob

e Sam responds with a key that Alice can read and a
key Bob can read (pre-shared)

o Alice sends the message encrypted with the key
and the second key it recieved

Asends S : Connect(A, B)

Ssends A : {Kap}r,and {{Kap}kps}Kas
Asends B : {Kap}kgs

Asends B : {m}xk,,

Controls

@ P controls F = (P says F) = F
@ its meaning “P is entitled to do F”

@ if P controls F and P says F then F

Controls

@ P controls F = (P says F) = F
@ its meaning “P is entitled to do F”
@ if P controls F and P says F then F

I' =P controls F I't-Psays F
'—F

Controls

@ P controls F = (P says F) = F
@ its meaning “P is entitled to do F”
@ if P controls F and P says F then F

I'=Pcontrols F I'Psays F
'—F

I'-(®PsaysF) =F TI'kPsaysF
I'HF

Security Levels

@ Top secret (TS)
@ Secret (S)
@ Public (P)

slev(P) < slev(S) < slev(TS)

Security Levels

Top secret (TS)
Secret (S)
Public (P)

slev(P) < slev(S) < slev(TS)

Bob has a clearance for “secret”

Bob can read documents that are public or sectret, but not
top secret

Reading a File

Bob controls Permitted (File, read)
Bob says Permitted (File, read)

Permitted (File, read)

Reading a File

slev(File) < slev(Bob) =

Bob controls Permitted (File, read)
Bob says Permitted (File, read)
slev(File) < slev(Bob)

Permitted (File, read)

Reading a File

slev(File) < slev(Bob) =
Bob controls Permitted (File, read)
Bob says Permitted (File, read)
slev(File) = P
slev(Bob) = S
slev(P) < slev(S)

Permitted (File, read)

Substitution Rule

I'kslev(P)=1;, TFkslev(Q)=1l, TFIl <L

'k slev(P) < slev(Q)

Substitution Rule

'k slev(P) =1, T F slev(Q) =1,

=t <l

I'+ slev(P) < slev(Q)

@ slev(Bob) =S
@ slev(File) = P
@ slev(P) < slev(S)

Reading a File

slev(File) < slev(Bob) =
Bob controls Permitted (File, read)
Bob says Permitted (File, read)
slev(File) = P
slev(Bob) =TS
5

Permitted (File, read)

Reading a File

slev(File) < slev(Bob) =
Bob controls Permitted (File, read)
Bob says Permitted (File, read)
slev(File) = P
slev(Bob) =
slev(P) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

Transitivity Rule

Fl—l1<l2 Fl—l2<l3
'l <l

@ slev(P) < slev(S)
@ slev(S) < slev(TS)
slev(P) < slev(TS)

Reading Files

e Access policy for reading

Vf. slev(f) < slev(Bob) =
Bob controls Permitted (f, read)
Bob says Permitted (File, read)
slev(File) = P
slev(Bob) =
slev(P) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

Reading Files

e Access policy for reading

Vf. slev(f) < slev(Bob) =
Bob controls Permitted (f, read)
Bob says Permitted (File, read)
slev(File) = TS
slev(Bob) =
slev(P) < slev(S)
slev(S) < slev(TS)

Permitted (File, read)

Writing Files

@ Access policy for writing

Vf. slev(Bob) < slev(f) =
Bob controls Permitted (f, write)
Bob says Permitted (File, write)
slev(File) = TS
slev(Bob) =
slev(P) < slev(S)
slev(S) < slev(TS)

Permitted (File, write)

Sending Rule

I'EPsays ' T'= P sends Q : F
I' = Q says F

Sending Rule

I'EPsays ' T'= P sends Q : F
I' = Q says F

def

PsendsQ : F =
(P says F') = (Qsays F)

Trusted Third Party

A sends S : Connect(A, B)
S says (Connect(A, B) =

{KaB}ras NM{{KaB}Kps}Kas)
S sends A: {Kap}r,s N {{KaB}Kps Kas
Asends B: {Kap}kps
Asends B: {m}k,,

Trusted Third Party

A sends S : Connect(A, B)
S says (Connect(A, B) =

{KaB}ras NM{{KaB}Kps}Kas)
S sends A: {Kap}r,s N {{KaB}Kps Kas
Asends B: {Kap}kps
Asends B: {m}k,,

I' = B says m?

