
Access Control and
Privacy Policies (4)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

APP 03, King’s College London, 22 October 2014 – p. 1/31



two weeks ago: buffer overflow attacks

APP 03, King’s College London, 22 October 2014 – p. 2/31



Buffer Overflows
As a proof-of-concept, the following URL allows
attackers to control the return value saved on
the stack (the vulnerability is triggered when
executing ”/usr/sbin/widget”):

curl http://<target ip>/post_login.xml?hash=AAA...AAABBBB

The value of the ”hash” HTTP GET parameter consists in
292 occurrences of the ’A’ character, followed by four
occurrences of character ’B’. In our lab setup, characters
’B’ overwrite the saved program counter (%ra).

Discovery date: 06/03/2013
Release date: 02/08/2013

http://pastebin.com/vbiG42VD

APP 03, King’s College London, 22 October 2014 – p. 3/31

http://pastebin.com/vbiG42VD


Backdoors
D-Link router flaw lets anyone login through
”Joel’s Backdoor”:
If you tell your browser to identify itself as Joel’s
backdoor, instead of (say) as Mozilla/5.0
AppleWebKit/536.30.1 Version/6.0.5, you’re in
without authentication.
”What is this string,” I hear you ask?
You will laugh: it is

xmlset_roodkcableoj28840ybtide

October 15, 2013
http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/

APP 03, King’s College London, 22 October 2014 – p. 4/31

http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/


Access Control in Unix

access control provided by the OS
authenticate principals (login)
mediate access to files, ports, processes according
to roles (user ids)
roles get attached with privileges

..
principle of least privilege:
programs should only have as much
privilege as they need

APP 03, King’s College London, 22 October 2014 – p. 5/31



Access Control in Unix (2)

the idea is to restrict access to files and therefore
lower the consequences of an attack

APP 03, King’s College London, 22 October 2014 – p. 6/31

..
Internet

.

Interface

.
unprivileged

process

.
privileged

process

..



Access Control

Discretionary Access Control:
Access to objects (files, directories, devices, etc.) is
permitted based on user identity. Each object is owned by a
user. Owners can specify freely (at their discretion) how
they want to share their objects with other users, by
specifying which other users can have which form of access
to their objects.
Discretionary access control is implemented on any
multi-user OS (Unix, Windows NT, etc.).

APP 03, King’s College London, 22 October 2014 – p. 7/31



Access Control

Mandatory Access Control:
Access to objects is controlled by a system-wide policy, for
example to prevent certain flows of information. In some
forms, the system maintains security labels for both objects
and subjects (processes, users), based on which access is
granted or denied. Labels can change as the result of an
access. Security policies are enforced without the
cooperation of users or application programs.
This is implemented today in special military operating
system versions (SELinux).

APP 03, King’s College London, 22 October 2014 – p. 8/31



Discretionary Access
Control

In its most generic form usually given by an Access
Control Matrix of the form

/mail/jane edit.exe sendmail
jane r, w r, x r, x
john ∅ r, w, x r, x

sendmail a ∅ r, x

access privileges: read, write, execute, append

APP 03, King’s College London, 22 October 2014 – p. 9/31



Mandatory Access Control
Restrictions to allowed information flows are not
decided at the user’s discretion (as with Unix
chmod), but instead enforced by system policies.
Mandatory access control mechanisms are aimed
in particular at preventing policy violations by
untrusted application software, which typically
have at least the same access privileges as the
invoking user.
Simple example: Air Gap Security. Uses
completely separate network and computer
hardware for different application classes.

APP 03, King’s College London, 22 October 2014 – p. 10/31



The Bell/LaPadula Model
Formal policy model for mandatory access
control in a military multi-level security
environment. All subjects (processes, users,
terminals) and data objects (files, directories,
windows, connections) are labeled with a
confidentiality level, e.g.
unclassified < confidential < secret < top secret.

The system policy automatically prevents the
flow of information from high-level objects to
lower levels. A process that reads top secret data
becomes tagged as top secret by the operating
system, as will be all files into which it writes
afterwards.

APP 03, King’s College London, 22 October 2014 – p. 11/31



Bell-LaPadula

Read Rule: A principal P can read an object O if and only
if P ’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P ’s.

Meta-Rule: All principals in a system should have a
sufficiently high security level in order to access an object.

This restricts information flow ⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’

APP 03, King’s College London, 22 October 2014 – p. 12/31



Bell-LaPadula

Read Rule: A principal P can read an object O if and only
if P ’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P ’s.

Meta-Rule: All principals in a system should have a
sufficiently high security level in order to access an object.

This restricts information flow ⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’

APP 03, King’s College London, 22 October 2014 – p. 12/31



Principle of
Least Privilege

..A principal should have as few privileges as
possible to access a resource.

Bob (TS) and Alice (S) want to communicate

⇒ Bob should lower his security level

APP 03, King’s College London, 22 October 2014 – p. 13/31



Biba Policy
Data Integrity (rather than data confidentiality)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only
if P ’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P ’s.

E.g. Firewalls: you can read from inside the firewall, but not
from outside
Phishing: you can look at an approved PDF, but not one
from a random email

APP 03, King’s College London, 22 October 2014 – p. 14/31



Biba Policy
Data Integrity (rather than data confidentiality)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only
if P ’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P ’s.

E.g. Firewalls: you can read from inside the firewall, but not
from outside
Phishing: you can look at an approved PDF, but not one
from a random email

APP 03, King’s College London, 22 October 2014 – p. 14/31



Security Levels (2)

Bell — La Padula preserves data secrecy, but not
data integrity

Biba model is for data integrity
read: your own level and above
write: your own level and below

APP 03, King’s College London, 22 October 2014 – p. 15/31



Security Levels (2)

Bell — La Padula preserves data secrecy, but not
data integrity

Biba model is for data integrity
read: your own level and above
write: your own level and below

APP 03, King’s College London, 22 October 2014 – p. 15/31



Shared Access Control

APP 03, King’s College London, 22 October 2014 – p. 16/31

To take an action you
need at least either:

1 CEO
2 MDs, or
3 Ds



Lessons from Access
Control

Not just restricted to Unix:
if you have too many roles (i.e. too finegrained
AC), then hierarchy is too complex
you invite situations like…let’s be root

you can still abuse the system…

APP 03, King’s College London, 22 October 2014 – p. 17/31



Protocols
A → B : . . .

B → A : . . .
:

by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)

APP 03, King’s College London, 22 October 2014 – p. 18/31



Protocols
A → B : . . .
B → A : . . .

:

by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)

APP 03, King’s College London, 22 October 2014 – p. 18/31



A mutual authentication
protocol

A → B: Na

B → A: {Na, Nb}Kab

A → B: Nb

An attacker E can launch an impersonation attack
by intercepting all messages for B and make A
decrypt her own challenges.

APP 03, King’s College London, 22 October 2014 – p. 19/31



A mutual authentication
protocol

A → B: Na

B → A: {Na, Nb}Kab

A → B: Nb

An attacker E can launch an impersonation attack
by intercepting all messages for B and make A
decrypt her own challenges.

APP 03, King’s College London, 22 October 2014 – p. 19/31



Nonces
...1 I generate a nonce (random number) and send it

to you encrypted with a key we share
...2 you increase it by one, encrypt it under a key I

know and send it back to me
I can infer:
you must have received my message
you could only have generated your answer after I
send you my initial message
if only you and me know the key, the message
must have come from you

APP 03, King’s College London, 22 October 2014 – p. 20/31



A → B: Na

B → A: {Na, Nb}Kab

A → B: Nb

The attack:

A → E: Na

E → A: Na

A → E: {Na, Na}Kab

E → A: {Na, Na}Kab

A → E: Na (= Nb)

Solutions: Kab ̸= Kba or include an id in the second
message

APP 03, King’s College London, 22 October 2014 – p. 21/31



A → B: Na

B → A: {Na, Nb}Kab

A → B: Nb

The attack:

A → E: Na

E → A: Na

A → E: {Na, Na}Kab

E → A: {Na, Na}Kab

A → E: Na (= Nb)

Solutions: Kab ̸= Kba or include an id in the second
message

APP 03, King’s College London, 22 October 2014 – p. 21/31



Identify Friend or Foe

APP 03, King’s College London, 22 October 2014 – p. 22/31

198?: war between
Angola (supported by
Cuba) and Namibia
(supported by SA)

..

“bystander”

..
attacker



Identify Friend or Foe

APP 03, King’s College London, 22 October 2014 – p. 22/31

198?: war between
Angola (supported by
Cuba) and Namibia
(supported by SA)

..

“bystander”

..
attacker



Identify Friend or Foe

APP 03, King’s College London, 22 October 2014 – p. 22/31

198?: war between
Angola (supported by
Cuba) and Namibia
(supported by SA)

..

“bystander”

..
attacker



Identify Friend or Foe

APP 03, King’s College London, 22 October 2014 – p. 22/31

198?: war between
Angola (supported by
Cuba) and Namibia
(supported by SA)

..

“bystander”

..
attacker

being outsmarted by
Angola/Cuba ended
SA involvement (?)



Identify Friend or Foe

APP 03, King’s College London, 22 October 2014 – p. 22/31

198?: war between
Angola (supported by
Cuba) and Namibia
(supported by SA)

..

“bystander”

..
attacker

being outsmarted by
Angola/Cuba ended
SA involvement (?)

IFF opened up a nice
side-channel attack



Encryption to the Rescue?

A → B : {A,NA}KAB
encrypted

B → A : {NA,K
′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities

APP 03, King’s College London, 22 October 2014 – p. 23/31



Encryption to the Rescue?

A → B : {A,NA}KAB
encrypted

B → A : {NA,K
′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities

APP 03, King’s College London, 22 October 2014 – p. 23/31



Protocol Attacks

replay attacks
reflection attacks
man-in-the-middle attacks
timing attacks
parallel session attacks
binding attacks (public key protocols)
changing environment / changing assumptions

(social engineering attacks)

APP 03, King’s College London, 22 October 2014 – p. 24/31



Replay Attacks
Schroeder-Needham protocol: exchange of a
symmetric key with a trusted 3rd-party S:

A → S :A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

at the end of the protocol both A and B should
be in the possession of the secret key KAB and
know that the other principal has the key

APP 03, King’s College London, 22 October 2014 – p. 25/31



Replay Attacks
Schroeder-Needham protocol: exchange of a
symmetric key with a trusted 3rd-party S:

A → S :A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

at the end of the protocol both A and B should
be in the possession of the secret key KAB and
know that the other principal has the key

APP 03, King’s College London, 22 October 2014 – p. 25/31



A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 26/31



A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 26/31



A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 26/31



A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 26/31



A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 26/31



A → S : A,B,NA

S → A : {NA, B,KAB, {KAB, A}KBS
}KAS

A → B : {KAB, A}KBS

B → A : {NB}KAB

A → B : {NB − 1}KAB

compromise KAB

A → S : A,B,N ′
A

S → A : {N ′
A, B,K′

AB, {K′
AB, A}KBS

}KAS

I(A) → B : {KAB, A}KBS
replay of older run

B → I(A) : {N ′
B}KAB

I(A) → B : {N ′
B − 1}KAB

B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A

APP 03, King’s College London, 22 October 2014 – p. 26/31



Schneier: Step 1

What assets are you trying to protect?

This question might seem basic, but a surprising
number of people never ask it. The question
involves understanding the scope of the problem.
For example, securing an airplane, an airport,
commercial aviation, the transportation system,
and a nation against terrorism are all different
security problems, and require different solutions.

APP 03, King’s College London, 22 October 2014 – p. 27/31



Schneier: Step 1
What assets are you trying to protect?

This question might seem basic, but a surprising
number of people never ask it. The question
involves understanding the scope of the problem.
For example, securing an airplane, an airport,
commercial aviation, the transportation system,
and a nation against terrorism are all different
security problems, and require different solutions.

..
You like to prevent: “It would be terrible if this sort of at-
tack ever happens; we need to do everything in our power
to prevent it.”

APP 03, King’s College London, 22 October 2014 – p. 27/31



Schneier: Step 2

What are the risks to these assets?

Here we consider the need for security. Answering
it involves understanding what is being defended,
what the consequences are if it is successfully
attacked, who wants to attack it, how they might
attack it, and why.

APP 03, King’s College London, 22 October 2014 – p. 28/31



Schneier: Step 3

How well does the security solution mitigate
those risks?

Another seemingly obvious question, but one that
is frequently ignored. If the security solution
doesn’t solve the problem, it’s no good. This is not
as simple as looking at the security solution and
seeing how well it works. It involves looking at
how the security solution interacts with
everything around it, evaluating both its operation
and its failures.

APP 03, King’s College London, 22 October 2014 – p. 29/31



Schneier: Step 4

What other risks does the security solution
cause?

This question addresses what might be called the
problem of unintended consequences. Security
solutions have ripple effects, and most cause new
security problems. The trick is to understand the
new problems and make sure they are smaller than
the old ones.

APP 03, King’s College London, 22 October 2014 – p. 30/31



Schneier: Step 5

What costs and trade-offs does the security
solution impose?

Every security system has costs and requires
trade-offs. Most security costs money, sometimes
substantial amounts; but other trade-offs may be
more important, ranging from matters of
convenience and comfort to issues involving basic
freedoms like privacy. Understanding these
trade-offs is essential.

APP 03, King’s College London, 22 October 2014 – p. 31/31


