
Access Control and
Privacy Policies (3)

Email: christian.urban at kcl.ac.uk
Office: S1.27 (1st floor Strand Building)
Slides: KEATS (also home work is there)

APP 03, King’s College London, 8 October 2013 – p. 1/1

first lecture

today

APP 03, King’s College London, 8 October 2013 – p. 2/1

first lecture today

APP 03, King’s College London, 8 October 2013 – p. 2/1

Network Applications:
Privilege Separation

..
Internet

.

Application

.

Interface

.
unprivileged

process

.
privileged

process

..

the idea is make the attack surface smaller and
mitigate the consequences of an attack

APP 03, King’s College London, 8 October 2013 – p. 3/1

Access Control in Unix

access control provided by the OS
authenticate principals (login)
mediate access to files, ports, processes according
to roles (user ids)
roles get attached with privileges

..
The principle of least privilege:
programs should only have as much
privilege as they need

APP 03, King’s College London, 8 October 2013 – p. 4/1

Process Ownership
access control in Unix is very coarse

root
user1 user2 …www, mail, lp

root has UID = 0

you also have groups that can share access to a file
but it is difficult to exclude access selectively

APP 03, King’s College London, 8 October 2013 – p. 5/1

Process Ownership
access control in Unix is very coarse

root
user1 user2 …www, mail, lp

root has UID = 0
you also have groups that can share access to a file
but it is difficult to exclude access selectively

APP 03, King’s College London, 8 October 2013 – p. 5/1

Access Control in Unix (2)

privileges are specified by file access permissions
(“everything is a file”)
there are 9 (plus 2) bits that specify the
permissions of a file

$ ls - la
-rwxrw-r-- foo_file.txt

APP 03, King’s College London, 8 October 2013 – p. 6/1

Login Process

login processes run under UID = 0

ps -axl | grep login

after login, shells run under UID = user (e.g. 501)

id cu

non-root users are not allowed to change the
UID — would break access control
but needed for example for passwd

APP 03, King’s College London, 8 October 2013 – p. 7/1

Login Process

login processes run under UID = 0

ps -axl | grep login

after login, shells run under UID = user (e.g. 501)

id cu

non-root users are not allowed to change the
UID — would break access control
but needed for example for passwd

APP 03, King’s College London, 8 October 2013 – p. 7/1

Setuid and Setgid
The solution is that unix file permissions are 9 +
2 Bits: Setuid and Setgid Bits
When a file with setuid is executed, the resulting
process will assume the UID given to the owner
of the file.
This enables users to create processes as root (or
another user).

Essential for changing passwords, for example.

chmod 4755 fobar_file

APP 03, King’s College London, 8 October 2013 – p. 8/1

Privilege Separation in
OpenSSH

..
Internet

.

Slave

.

Slave

.
Slave

.
unprivileged

processes

.
privileged

process

.

Monitor

..

pre-authorisation slave
post-authorisation

25% codebase is privileged, 75% is unprivileged
APP 03, King’s College London, 8 October 2013 – p. 9/1

Network Applications
ideally network application in Unix should be
designed as follows:
need two distinct processes

one that listens to the network; has no privilege
one that is privileged and listens to the latter only (but
does not trust it)

to implement this you need a parent process,
which forks a child process
this child process drops privileges and listens to
hostile data

after authentication the parent forks again and
the new child becomes the user

APP 03, King’s College London, 8 October 2013 – p. 10/1

Famous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …

for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London, 8 October 2013 – p. 11/1

Famous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …

for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London, 8 October 2013 – p. 11/1

Famous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …

mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London, 8 October 2013 – p. 11/1

Famous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London, 8 October 2013 – p. 11/1

Famous Security Flaws
in Unix

lpr unfortunately runs with root privileges; you
had the option to delete files after printing …
for debugging purposes (FreeBSD) Unix provides
a “core dump”, but allowed to follow links …
mkdir foo is owned by root

-rwxr-xr-x 1 root wheel /bin/mkdir

it first creates an i-node as root and then changes
to ownership to the user’s id
(race condition – can be automated with a shell script)

APP 03, King’s College London, 8 October 2013 – p. 11/1

..Only failure makes us experts. – Theo
de Raadt (OpenBSD, OpenSSH)

A “Cron”-Attack
...1 attacker (creates a fake passwd file)
mkdir /tmp/a; cat > /tmp/a/passwd

...2 root (does the daily cleaning)
rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

...3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

...4 root now deletes the real passwd file
APP 03, King’s College London, 8 October 2013 – p. 12/1

A “Cron”-Attack
...1 attacker (creates a fake passwd file)
mkdir /tmp/a; cat > /tmp/a/passwd

...2 root (does the daily cleaning)
rm /tmp/*/*

records that /tmp/a/passwd
should be deleted, but does not do it yet

...3 attacker (meanwhile deletes the fake passwd file,
and establishes a link to the real passwd file)
rm /tmp/a/passwd; rmdir /tmp/a;
ln -s /etc /tmp/a

...4 root now deletes the real passwd file
APP 03, King’s College London, 8 October 2013 – p. 12/1

..
To prevent this kind of attack, you need
additional policies (don’t do such
operations as root).

one general defence mechanism is
defence in depth

APP 03, King’s College London, 8 October 2013 – p. 13/1

Smash the Stack for Fun …
“smashing the stack attacks” or
“buffer overflow attacks”
one of the most popular attacks
(> 50% of security incidents reported at CERT
are related to buffer overflows)

http://www.kb.cert.org/vuls

made popular in an article by Elias Levy
(also known as Aleph One):

“Smashing The Stack For Fun and Profit”

Issue 49, Article 14
APP 03, King’s College London, 8 October 2013 – p. 14/1

http://www.kb.cert.org/vuls

A Float Printed “Twice”
1 void foo (char *bar)
2 {
3 float my_float = 10.5; // in hex: \x41\x28\x00\x00
4 char buffer[28];
5

6 printf(”my float value = %f\n”, my_float);
7 strcpy(buffer, bar);
8 printf(”my float value = %f\n”, my_float);
9 }

10

11 int main (int argc, char **argv)
12 {
13 foo(”my string is too long !!!!! ”);
14 return 0;
15 }

APP 03, King’s College London, 8 October 2013 – p. 15/1

The Problem
The basic problem is that library routines in C
look as follows:

1 void strcpy(char *src, char *dst) {
2 int i = 0;
3 while (src[i] != ”\0”) {
4 dst[i] = src[i];
5 i = i + 1;
6 }
7 }

the resulting problems are often remotely
exploitable
can be used to circumvents all access control
(for grooming botnets for further attacks)

APP 03, King’s College London, 8 October 2013 – p. 16/1

Variants

There are many variants:
return-to-lib-C attacks
heap-smashing attacks
(Slammer Worm in 2003 infected 90% of vulnerable
systems within 10 minutes)

“zero-days-attacks” (new unknown vulnerability)

APP 03, King’s College London, 8 October 2013 – p. 17/1

APP 03, King’s College London, 8 October 2013 – p. 18/1

APP 03, King’s College London, 8 October 2013 – p. 18/1

APP 03, King’s College London, 8 October 2013 – p. 18/1

1 int match(char *s1, char *s2) {
2 while(*s1 != ’\0’ && *s2 != ’\0’ && *s1 == *s2){
3 s1++; s2++;
4 }
5 return(*s1 - *s2);
6 }
7
8 void welcome() { printf(”Welcome to the Machine!\n”); exit(0); }
9 void goodbye() { printf(”Invalid identity, exiting!\n”); exit(1); }

10
11 main(){
12 char name[8];
13 char pw[8];
14
15 printf(”login: ”);
16 get_line(name);
17 printf(”password: ”);
18 get_line(pw);
19
20 if(match(name, pw) == 0)
21 welcome();
22 else
23 goodbye();
24 }

APP 03, King’s College London, 8 October 2013 – p. 19/1

Payloads

the idea is you store some code to the buffer
you then override the return address to execute
this payload

normally you start a root-shell

difficulty is to guess the right place where to
“jump”

APP 03, King’s College London, 8 October 2013 – p. 20/1

Payloads

the idea is you store some code to the buffer
you then override the return address to execute
this payload

normally you start a root-shell
difficulty is to guess the right place where to
“jump”

APP 03, King’s College London, 8 October 2013 – p. 20/1

Payloads (2)
another difficulty is that the code is not allowed
to contain \x00:

xorl %eax, %eax

1 void strcpy(char *src, char *dst) {
2 int i = 0;
3 while (src[i] != ”\0”) {
4 dst[i] = src[i];
5 i = i + 1;
6 }
7 }

APP 03, King’s College London, 8 October 2013 – p. 21/1

Format String Vulnerability
string is nowhere used:

1 #include<stdio.h>
2 #include<string.h>
3

4 // a program that ”just” prints the argument
5 // on the command line
6

7

8 main(int argc, char **argv)
9 {

10 char *string = ”This is a secret string\n”;
11

12 printf(argv[1]);
13 }

this vulnerability can be used to read out the stack
APP 03, King’s College London, 8 October 2013 – p. 22/1

Protections against
Buffer Overflow Attacks

use safe library functions
stack caneries
ensure stack data is not executable (can be
defeated)
address space randomisation (makes
one-size-fits-all more difficult)
choice of programming language (one of the
selling points of Java)

APP 03, King’s College London, 8 October 2013 – p. 23/1

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)

Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 24/1

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)

Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 24/1

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)

Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 24/1

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)

Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 24/1

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)

Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 24/1

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)

Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 24/1

Security Goals
Prevent common vulnerabilities from occurring
(e.g. buffer overflows)
Recover from attacks (traceability and auditing of
security-relevant actions)
Monitoring (detect attacks)
Privacy, confidentiality, anonymity (to protect
secrets)
Authenticity (needed for access control)
Integrity (prevent unwanted modification or
tampering)
Availability and reliability (reduce the risk of DoS
attacks)

APP 03, King’s College London, 8 October 2013 – p. 24/1

Homework

Assume format string attacks allow you to read
out the stack. What can you do with this
information?

Assume you can crash a program remotely. Why
is this a problem?

APP 03, King’s College London, 8 October 2013 – p. 25/1

