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last week: buffer overflow attacks
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D-Link Wifi Router, BOA
As a proof-of-concept, the following URL allows attackers
to control the return value saved on the stack (the
vulnerability is triggered when executing ”/usr/sbin/widget”):

curl http://<target ip>/post_login.xml?hash=AAA...AAABBBB

The value of the ”hash” HTTP GET parameter consists of
292 occurrences of the ’A’ character, followed by four
occurrences of character ’B’. In our lab setup, characters
’B’ overwrite the saved program counter (%ra).

Discovery date: 06/03/2013
Release date: 02/08/2013

http://roberto.greyhats.it/advisories/
20130801-dlink-dir645.txt
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D-Link Backdoors
D-Link router flaw lets anyone login through
”Joel’s Backdoor”:

If you tell your browser to identify itself as Joel’s backdoor,
instead of (say) as Mozilla/5.0 AppleWebKit/536.30.1
Version/6.0.5, you’re in without authentication.
”What is this string,” I hear you ask?
You will laugh: it is

xmlset_roodkcableoj28840ybtide

October 15, 2013
http://www.devttys0.com/2013/10/

reverse-engineering-a-d-link-backdoor/
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CVE-2014-0476 chkrootkit vulnerability 4 Jun’14
Hi,
we just found a serious vulnerability in the chkrootkit
package, which may allow local attackers to gain root
access to a box in certain configurations (/tmp not
mounted noexec). Steps to reproduce:

Put an executable file named update with non-root
owner in /tmp (not mounted noexec, obviously)
Run chkrootkit (as uid 0)

Result: The file /tmp/update will be executed as root, thus
effectively rooting your box, if malicious content is placed
inside the file.
If an attacker knows you are periodically running
chkrootkit (like in cron.daily) and has write access to /tmp
(not mounted noexec), he may easily take advantage of
this.

http://seclists.org/oss-sec/2014/q2/430
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Access Control in Unix

access control provided by the OS
authenticate principals (login)
mediate access to files, ports, processes according
to roles (user ids)
roles get attached with privileges

principle of least privilege:
users and programs should only have
as much privilege as they need
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Access Control in Unix (2)

privileges are specified by file access permissions
(“everything is a file”)

there are 9 (plus 2) bits that specify the
permissions of a file

$ ls -la
-rwxrw-r-- foo_file.txt
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Login Process

login processes run under UID = 0

ps -axl | grep login

after login, shells run under UID = user (e.g. 501)

id cu

non-root users are not allowed to change the
UID — would break access control
but needed for example for passwd
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Setuid and Setgid
The solution is that Unix file permissions are 9 +
2 Bits: Setuid and Setgid Bits
When a file with setuid is executed, the resulting
process will assume the UID given to the owner
of the file.
This enables users to create processes as root (or
another user).

Essential for changing passwords, for example.

chmod 4755 fobar_file
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Access Control

Discretionary Access Control:
Access to objects (files, directories, devices, etc.) is
permitted based on user identity. Each object is owned by a
user. Owners can specify freely (at their discretion) how
they want to share their objects with other users, by
specifying which other users can have which form of access
to their objects.
Discretionary access control is implemented on any
multi-user OS (Unix, Windows NT, etc.).
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Access Control

Mandatory Access Control:
Access to objects is controlled by a system-wide policy, for
example to prevent certain flows of information. In some
forms, the system maintains security labels for both objects
and subjects (processes, users), based on which access is
granted or denied. Labels can change as the result of an
access. Security policies are enforced without the
cooperation of users or application programs.
This is implemented today in special military operating
system versions (SELinux).
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Discretionary Access Control

In its most generic form usually given by an Access
Control Matrix of the form

/mail/jane edit.exe sendmail
jane r, w r, x r, x
john ∅ r, w, x r, x

sendmail a ∅ r, x

access privileges: read, write, execute, append
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$ ls -ld . * */*
drwxr-xr-x ping staff 32768 Apr 2 2010 .
-rw----r-- ping students 31359 Jul 24 2011 manual.txt
-r--rw--w- bob students 4359 Jul 24 2011 report.txt
-rwsr--r-x bob students 141359 Jun 1 2013 microedit
dr--r-xr-x bob staff 32768 Jul 23 2011 src
-rw-r--r-- bob staff 81359 Feb 28 2012 src/code.c
-r--rw---- emma students 959 Jan 23 2012 src/code.h

Members of group staff: ping, bob, emma
Members of group students: emma

manual.txt report.txt microedit src/code.c src/code.h
ping
bob

emma
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Mandatory Access Control

Restrictions to allowed information flows are not decided
at the user’s discretion (as with Unix chmod), but instead
enforced by system policies.

Mandatory access control mechanisms are aimed in
particular at preventing policy violations by untrusted
application software, which typically have at least the same
access privileges as the invoking user.

Simple example: Air Gap Security. Uses completely
separate network and computer hardware for different
application classes.
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The Bell/LaPadula Model
Formal policy model for mandatory access
control in a military multi-level security
environment. All subjects (processes, users,
terminals, files, windows, connections) are labeled
with a confidentiality level, e.g.

unclassified < confidential < secret < top secret
The system policy automatically prevents the
flow of information from high-level objects to
lower levels. A process that reads top secret data
becomes tagged as top secret by the operating
system, as will be all files into which it writes
afterwards.
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Bell-LaPadula

Read Rule: A principal P can read an object O if and only if
P’s security level is at least as high as O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is at least as high as P’s.

Meta-Rule: All principals in a system should have a
sufficiently high security level in order to access an object.

This restricts information flow ⇒ military

Bell-LaPadula: ‘no read up’ - ‘no write down’
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Principle of
Least Privilege

A principal should have as few privileges as
possible to access a resource.

Bob (TS) and Alice (S) want to communicate

⇒ Bob should lower his security level
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Biba Policy
Data Integrity (rather than data confidentiality)

Biba: ‘no read down’ - ‘no write up’

Read Rule: A principal P can read an object O if and only if
P’s security level is lower or equal than O’s.

Write Rule: A principal P can write an object O if and only
if O’s security level is lower or equal than P’s.

E.g. Firewalls: you can read from inside the firewall, but not
from outside
Phishing: you can look at an approved PDF, but not one
from a random email
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Security Levels (2)

Bell-La Padula preserves data secrecy, but not
data integrity

Biba model is for data integrity
read: your own level and above
write: your own level and below
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Shared Access Control
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To take an action you
need at least either:

1 CEO
2 MDs, or
3 Ds



Lessons from Access Control
Not just restricted to Unix:
if you have too many roles (i.e. too finegrained
AC), then hierarchy is too complex
you invite situations like…lets be root

you can still abuse the system…

policies (a finite system)
computer system (infinite)
Q: Does your policy ensure that a tainted file
cannot affect your core system files?
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Protocols

A → B : . . .

B → A : . . .
:

by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)
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Cryptographic Protocol Failures

Ross Anderson and Roger Needham wrote:

A lot of the recorded frauds were the result of
this kind of blunder, or from management
negligence pure and simple. However, there
have been a significant number of cases where
the designers protected the right things, used
cryptographic algorithms which were not
broken, and yet found that their systems were
still successfully attacked.
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Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not
allow unauthorised use for more than a day, as
TfL promises to turn off any cloned cards within
24 hours…”
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Wirelessly Pickpocketing a Mifare Classic Card

The Mifare Classic is the most widely used contactless smartcard on the
market. The stream cipher CRYPTO1 used by the Classic has recently
been reverse engineered and serious attacks have been proposed. The
most serious of them retrieves a secret key in under a second. In order to
clone a card, previously proposed attacks require that the adversary either
has access to an eavesdropped communication session or executes a
message-by-message man-in-the-middle attack between the victim and a
legitimate reader. Although this is already disastrous from a cryptographic
point of view, system integrators maintain that these attacks cannot be
performed undetected.
This paper proposes four attacks that can be executed by an adversary
having only wireless access to just a card (and not to a legitimate reader).
The most serious of them recovers a secret key in less than a second on
ordinary hardware. Besides the cryptographic weaknesses, we exploit
other weaknesses in the protocol stack. A vulnerability in the
computation of parity bits allows an adversary to establish a side channel.
Another vulnerability regarding nested authentications provides enough
plaintext for a speedy known-plaintext attack. (a paper from 2009)
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Another Example
In an email from Ross Anderson

From: Ross Anderson <Ross.Anderson@cl.cam.ac.uk>
Sender: cl-security-research-bounces@lists.cam.ac.uk
To: cl-security-research@lists.cam.ac.uk
Subject: Birmingham case
Date: Tue, 13 Aug 2013 15:13:17 +0100
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As you may know, Volkswagen got an injunction against the University of
Birmingham suppressing the publication of the design of a weak cipher
used in the remote key entry systems in its recent-model cars. The paper
is being given today at Usenix, minus the cipher design.

I’ve been contacted by Birmingham University’s lawyers who seek to prove
that the cipher can be easily obtained anyway. They are looking for a
student who will download the firmware from any newish VW,
disassemble it and look for the cipher. They’d prefer this to be done by a
student rather than by a professor to emphasise how easy it is.

Volkswagen’s argument was that the Birmingham people had reversed a
locksmithing tool produced by a company in Vietnam, and since their key
fob chip is claimed to be tamper-resistant, this must have involved a
corrupt insider at VW or at its supplier Thales. Birmingham’s argument is
that this is nonsense as the cipher is easy to get hold of. Their lawyers feel
this argument would come better from an independent outsider.

Let me know if you’re interested in having a go, and I’ll put you in touch
Ross



Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Passwords:

B → A : KAB

Problem: Eavesdropper can capture the secret and
replay it; A cannot confirm the identity of B
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Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Simple Challenge Response:

A → B : N
B → A : {N}KAB
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Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Mutual Challenge Response:

A → B : NA
B → A : {NA,NB}KAB
A → B : NB
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Nonces
1 I generate a nonce (random number) and send it

to you encrypted with a key we share
2 you increase it by one, encrypt it under a key I

know and send it back to me
I can infer:
you must have received my message
you could only have generated your answer after I
send you my initial message
if only you and me know the key, the message
must have come from you
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A → B: Na
B → A: {Na,Nb}Kab
A → B: Nb

The attack (let A decrypt her own messages):

A → E: Na
E → A: Na
A → E: {Na,Na}Kab
E → A: {Na,Na}Kab
A → E: Na (= Nb)

Solutions: Kab ̸= Kba or include an id in the second message
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Encryption to the Rescue?

A → B : {A,NA}KAB encrypted

B → A : {NA,K′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities
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Protocol Attacks

replay attacks
reflection attacks
man-in-the-middle attacks
timing attacks
parallel session attacks
binding attacks (public key protocols)
changing environment / changing assumptions

(social engineering attacks)
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Public-Key Infrastructure

the idea is to have a certificate authority (CA)
you go to the CA to identify yourself
CA: “I, the CA, have verified that public key PpubBob
belongs to Bob”

CA must be trusted by everybody
What happens if CA issues a false certificate?
Who pays in case of loss? (VeriSign explicitly
limits liability to $100.)
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Person-in-the-Middle

“Normal” protocol run:

A sends public key to B
B sends public key to A
A sends message encrypted with B’s public key, B
decrypts it with its private key
B sends message encrypted with A’s public key, A
decrypts it with its private key
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Person-in-the-Middle

Attack:
A sends public key to B — C intercepts this
message and send his own public key
B sends public key to A — C intercepts this
message and send his own public key
A sends message encrypted with C’s public key, C
decrypts it with its private key, re-encrypts with
B’s public key
similar for other direction
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Person-in-the-Middle
Prevention:
A sends public key to B
B sends public key to A
A encrypts message with B’s public key, send’s
half of the message
B encrypts message with A’s public key, send’s
half of the message
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message

C would have to invent a totally new message
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Binding Attacks
with public-private keys it is important that the
public key is bound to the right owner (verified by
a certification authority CA)

A → CA : A,B,NA

CA → A : CA, {CA,A,NA,Kpub
B }KpubA

A knows Kpriv
A and can verify the message came

from CA in response to A’s message and trusts
Kpub
B is B’s public key
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Binding Attacks

A → I(CA) : A,B,NA
I(A) → CA : A, I,NA

CA → I(A) : CA, {CA,A,NA,Kpub
I }KpubA

I(CA) → A : CA, {CA,A,NA,Kpub
I }KpubA

A now encrypts messages for B with the public
key of I (which happily decrypts them with its
private key)
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Replay Attacks
Schroeder-Needham protocol: exchange of a
symmetric key with a trusted 3rd-party S:

A → S : A,B,NA
S → A : {NA,B,KAB, {KAB,A}KBS}KAS
A → B : {KAB,A}KBS
B → A : {NB}KAB
A → B : {NB − 1}KAB

at the end of the protocol both A and B should be
in the possession of the secret key KAB and know
that the other principal has the key
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A → S : A,B,NA
S → A : {NA,B,KAB, {KAB,A}KBS}KAS
A → B : {KAB,A}KBS
B → A : {NB}KAB
A → B : {NB − 1}KAB

compromise KAB
A → S : A,B,N′

A
S → A : {N′

A,B,K′
AB, {K′

AB,A}KBS}KAS
I(A) → B : {KAB,A}KBS replay of older run
B → I(A) : {N′

B}KAB
I(A) → B : {N′

B − 1}KAB
B believes it is following the correct protocol,
intruder I can form the correct response because
it knows KAB and talks to B masquerading as A
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Time-Stamps
The Schroeder-Needham protocol can be fixed by
including a time-stamp (e.g., in Kerberos):

A → S : A,B,NA
S → A : {NA,B,KAB, {KAB,A,TS}KBS}KAS
A → B : {KAB,A,TS}KBS
B → A : {NB}KAB
A → B : {NB − 1}KAB

but nothing is for free: then you need to
synchronise time and possibly become a victim to
timing attacks
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A Man-in-the-middle attack in real life:
the card only says yes to the terminal if the PIN
is correct
trick the card in thinking transaction is verified
by signature
trick the terminal in thinking the transaction was
verified by PIN
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Problems with EMV

it is a wrapper for many protocols
specification by consensus (resulted
unmanageable complexity)
its specification is 700 pages in English plus
2000+ pages for testing, additionally some
further parts are secret
other attacks have been found
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Problems with WEP (Wifi)
a standard ratified in 1999
the protocol was designed by a committee not
including cryptographers
it used the RC4 encryption algorithm which is a
stream cipher requiring a unique nonce
WEP did not allocate enough bits for the nonce
for authenticating packets it used CRC checksum
which can be easily broken
the network password was used to directly
encrypt packages (instead of a key negotiation
protocol)

encryption was turned off by default
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Protocols are Difficult

even the systems designed by experts regularly fail

try to make everything explicit (you need to
authenticate all data you might rely on)

the one who can fix a system should also be liable
for the losses

cryptography is often not the answer
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Best Practices

Principle 1: Every message should say what it
means: the interpretation of a message should not
depend on the context.

Principle 2: If the identity of a principal is
essential to the meaning of a message, it is prudent
to mention the principal’s name explicitly in the
message (though difficult).
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Principle 3: Be clear about why encryption is
being done. Encryption is not cheap, and not
asking precisely why it is being done can lead to
redundancy. Encryption is not synonymous with
security.

Possible Uses of Encryption
Preservation of confidentiality: {X}K only those
that have K may recover X.
Guarantee authenticity: The partner is indeed
some particular principal.
Guarantee confidentiality and authenticity: binds
two parts of a message — {X,Y}K is not the
same as {X}K and {Y}K.
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Best Practices

Principle 4: The protocol designer should know
which trust relations his protocol depends on, and
why the dependence is necessary. The reasons for
particular trust relations being acceptable should
be explicit though they will be founded on
judgment and policy rather than on logic.

Example Certification Authorities: CAs are
trusted to certify a key only after proper steps have
been taken to identify the principal that owns it.
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