
Security Engineering (5)

Email: christian.urban at kcl.ac.uk
Office: N7.07 (North Wing, Bush House)
Slides: KEATS (also homework is there)

SEN 05, King’s College London – p. 1/59

Protocols

Other examples: Wifi, Http-request,
TCP-request, card readers, RFID (passports)…

The point is that we cannot control the network:
An attacker can install a packet sniffer, inject
packets, modify packets, replay messages…fake
pretty much everything.

SEN 05, King’s College London – p. 2/59

Protocols

Other examples: Wifi, Http-request,
TCP-request, card readers, RFID (passports)…

The point is that we cannot control the network:
An attacker can install a packet sniffer, inject
packets, modify packets, replay messages…fake
pretty much everything.

SEN 05, King’s College London – p. 2/59

Keyless Car Transponders

There are two security mechanisms: one remote
central locking system and one passive RFID tag
(engine immobiliser).
How can I get in? How can thieves be kept out?
How to avoid MITM attacks?

Papers: Gone in 360 Seconds: Hijacking with Hitag2,
Dismantling Megamos Crypto: Wirelessly Lockpicking

a Vehicle Immobilizer
SEN 05, King’s College London – p. 3/59

ProblemswithKey Fobs
Circumventing the ignition
protection:

either dismantling Megamos
crypto,

or use the diagnostic port to
program blank keys

SEN 05, King’s College London – p. 4/59

HTTPS / GSM

I am sitting at Starbuck. How can I be sure I am
really visiting Barclays? I have no control of the
access point.
How can I achieve that a secret key is established
in order to encrypt my mobile conversation? I
have no control over the access points.

SEN 05, King’s College London – p. 5/59

G20 Summit in 2009

Snowden documents reveal “that during the G20
meetings…GCHQ used ‘ground-breaking intelligence
capabilities’ to intercept the communications of visiting
delegations. This included setting up internet cafes where
they used an email interception program and key-logging
software to spy on delegates’ use of computers…”

“The G20 spying appears to have been organised for the
more mundane purpose of securing an advantage in
meetings.”

SEN 05, King’s College London – p. 6/59

Handshakes

starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

SEN 05, King’s College London – p. 7/59

Handshakes

starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

SEN 05, King’s College London – p. 7/59

SYNflood
attacks:

Protocols
A → B : . . .

B → A : . . .
:

by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)

SEN 05, King’s College London – p. 8/59

Protocols
A → B : . . .
B → A : . . .

:

by convention A, B are named principals Alice…
but most likely they are programs, which just
follow some instructions (they are more like roles)

indicates one “protocol run”, or session, which
specifies some order in the communication
there can be several sessions in parallel (think of
wifi routers)

SEN 05, King’s College London – p. 8/59

Messages

A → B : msg

Unencrypted: msg
Random number (nonce): N
Encrypted: {msg}K, {msg1,msg2}K, {{msg}K1}K2

SEN 05, King’s College London – p. 9/59

Handshakes
starting a TCP connection between a client and a
server initiates the following three-way
handshake protocol:

Alice: Hello server!
Server: I heard you
Alice: Thanks

A → S: SYN
S → A: SYN-ACK
A → S: ACK

SEN 05, King’s College London – p. 10/59

Cryptographic Protocol Failures

Ross Anderson and Roger Needham wrote:

A lot of the recorded frauds were the result of this
kind of blunder, or from management negligence
pure and simple. However, there have been a sig-
nificant number of cases where the designers pro-
tected the right things, used cryptographic algo-
rithms which were not broken, and yet found that
their systems were still successfully attacked.

SEN 05, King’s College London – p. 11/59

Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not allow
unauthorised use for more than a day, as TfL promises
to turn off any cloned cards within 24 hours…”

SEN 05, King’s College London – p. 12/59

Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not allow
unauthorised use for more than a day, as TfL promises
to turn off any cloned cards within 24 hours…”

SEN 05, King’s College London – p. 12/59

Wirelessly Pickpocketing aMifare Classic Card

The Mifare Classic is the most widely used contactless smartcard on the
market. The stream cipher CRYPTO1 used by the Classic has recently
been reverse engineered and serious attacks have been proposed. The
most serious of them retrieves a secret key in under a second. In order to
clone a card, previously proposed attacks require that the adversary either
has access to an eavesdropped communication session or executes a
message-by-message man-in-the-middle attack between the victim and a
legitimate reader. Although this is already disastrous from a cryptographic
point of view, system integrators maintain that these attacks cannot be
performed undetected.
This paper proposes four attacks that can be executed by an adversary
having only wireless access to just a card (and not to a legitimate reader).
The most serious of them recovers a secret key in less than a second on
ordinary hardware. Besides the cryptographic weaknesses, we exploit
other weaknesses in the protocol stack. A vulnerability in the
computation of parity bits allows an adversary to establish a side channel.
Another vulnerability regarding nested authentications provides enough
plaintext for a speedy known-plaintext attack. (a paper from 2009)

Oyster Cards

good example of a bad protocol
(security by obscurity)

“Breaching security on Oyster cards should not allow
unauthorised use for more than a day, as TfL promises
to turn off any cloned cards within 24 hours…”

SEN 05, King’s College London – p. 12/59

Another Example
In an email from Ross Anderson
From: Ross Anderson <Ross.Anderson@cl.cam.ac.uk>
Sender: cl-security-research-bounces@lists.cam.ac.uk
To: cl-security-research@lists.cam.ac.uk
Subject: Birmingham case
Date: Tue, 13 Aug 2013 15:13:17 +0100

SEN 05, King’s College London – p. 13/59

Another Example
In an email from Ross Anderson
From: Ross Anderson <Ross.Anderson@cl.cam.ac.uk>
Sender: cl-security-research-bounces@lists.cam.ac.uk
To: cl-security-research@lists.cam.ac.uk
Subject: Birmingham case
Date: Tue, 13 Aug 2013 15:13:17 +0100

SEN 05, King’s College London – p. 13/59

As you may know, Volkswagen got an injunction against the University of
Birmingham suppressing the publication of the design of a weak cipher
used in the remote key entry systems in its recent-model cars. The paper
is being given today at Usenix, minus the cipher design.

I’ve been contacted by Birmingham University’s lawyers who seek to prove
that the cipher can be easily obtained anyway. They are looking for a
student who will download the firmware from any newish VW,
disassemble it and look for the cipher. They’d prefer this to be done by a
student rather than by a professor to emphasise how easy it is.

Volkswagen’s argument was that the Birmingham people had reversed a
locksmithing tool produced by a company in Vietnam, and since their key
fob chip is claimed to be tamper-resistant, this must have involved a
corrupt insider at VW or at its supplier Thales. Birmingham’s argument is
that this is nonsense as the cipher is easy to get hold of. Their lawyers feel
this argument would come better from an independent outsider.

Let me know if you’re interested in having a go, and I’ll put you in touch
Ross

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Passwords:

B → A : KAB

Problem: Eavesdropper can capture the secret and
replay it; A cannot confirm the identity of B

SEN 05, King’s College London – p. 14/59

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Passwords:

B → A : KAB

Problem: Eavesdropper can capture the secret and
replay it; A cannot confirm the identity of B

SEN 05, King’s College London – p. 14/59

Authentication?

SEN 05, King’s College London – p. 15/59

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Simple Challenge Response:

A → B : N
B → A : {N}KAB

SEN 05, King’s College London – p. 16/59

Authentication Protocols

Alice (A) and Bob (B) share a secret key KAB

Mutual Challenge Response:

A → B : NA
B → A : {NA,NB}KAB
A → B : NB

SEN 05, King’s College London – p. 17/59

Nonces
1 I generate a nonce (random number) and send it

to you encrypted with a key we share
2 you increase it by one, encrypt it under a key I

know and send it back to me
I can infer:
you must have received my message
you could only have generated your answer after I
send you my initial message
if only you and me know the key, the message
must have come from you

SEN 05, King’s College London – p. 18/59

A → B: NA
B → A: {NA,NB}KAB
A → B: NB

The attack (let A decrypt her own messages):

A → E: NA
E → A: NA
A → E: {NA,N′

A}KAB
E → A: {NA,N′

A}KAB
A → E: N′

A (= NB)

Solutions: KAB ̸= KBA or include an id in the second
message

SEN 05, King’s College London – p. 19/59

A → B: NA
B → A: {NA,NB}KAB
A → B: NB

The attack (let A decrypt her own messages):

A → E: NA
E → A: NA
A → E: {NA,N′

A}KAB
E → A: {NA,N′

A}KAB
A → E: N′

A (= NB)

Solutions: KAB ̸= KBA or include an id in the second
message

SEN 05, King’s College London – p. 19/59

Encryption to the Rescue?

A → B : {A,NA}KAB encrypted

B → A : {NA,K′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities

SEN 05, King’s College London – p. 20/59

Encryption to the Rescue?

A → B : {A,NA}KAB encrypted

B → A : {NA,K′
AB}KAB

A → B : {NA}K′
AB

means you need to send separate “Hello” signals
(bad), or worse share a single key between many
entities

SEN 05, King’s College London – p. 20/59

Protocol Attacks

replay attacks
reflection attacks
man-in-the-middle attacks
timing attacks
parallel session attacks
binding attacks (public key protocols)
changing environment / changing assumptions

(social engineering attacks)

SEN 05, King’s College London – p. 21/59

Public-Key Infrastructure

the idea is to have a certificate authority (CA)
you go to the CA to identify yourself
CA: “I, the CA, have verified that public key PpubBob
belongs to Bob”

CA must be trusted by everybody
What happens if CA issues a false certificate?
Who pays in case of loss? (VeriSign explicitly
limits liability to $100.)

SEN 05, King’s College London – p. 22/59

Man-in-the-Middle

“Normal” protocol run:

A sends public key to B
B sends public key to A
A sends message encrypted with B’s public key, B
decrypts it with its private key
B sends message encrypted with A’s public key, A
decrypts it with its private key

SEN 05, King’s College London – p. 23/59

Man-in-the-Middle

Attack:
A sends public key to B — C intercepts this
message and send his own public key
B sends public key to A — C intercepts this
message and send his own public key
A sends message encrypted with C’s public key, C
decrypts it with its private key, re-encrypts with
B’s public key
similar for other direction

SEN 05, King’s College London – p. 24/59

Man-in-the-Middle
Potential Prevention?
A sends public key to B
B sends public key to A
A encrypts message with B’s public key, send’s
half of the message
B encrypts message with A’s public key, send’s
half of the message
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message

Under which circumstances does this protocol
prevent MiM-attacks, or does it?

SEN 05, King’s College London – p. 25/59

Man-in-the-Middle
Potential Prevention?
A sends public key to B
B sends public key to A
A encrypts message with B’s public key, send’s
half of the message
B encrypts message with A’s public key, send’s
half of the message
A sends other half, B can now decrypt entire
message
B sends other half, A can now decrypt entire
message
Under which circumstances does this protocol
prevent MiM-attacks, or does it?

SEN 05, King’s College London – p. 25/59

Car Transponder (HiTag2)
1 C generates a random number N
2 C calculates (F,G) = {N}K
3 C → T: N,F
4 T calculates (F′,G′) = {N}K
5 T checks that F = F′

6 T → C: N,G′

7 C checks that G = G′

This process means that the transponder believes the car
knows the key K, and the car believes the transponder
knows the key K. They have authenticated themselves to
each other, or have they?

SEN 05, King’s College London – p. 26/59

Car Transponder (HiTag2)
1 C generates a random number N
2 C calculates (F,G) = {N}K
3 C → T: N,F
4 T calculates (F′,G′) = {N}K
5 T checks that F = F′

6 T → C: N,G′

7 C checks that G = G′

This process means that the transponder believes the car
knows the key K, and the car believes the transponder
knows the key K. They have authenticated themselves to
each other, or have they?

SEN 05, King’s College London – p. 26/59

A Man-in-the-middle attack in real life:
the card only says yes to the terminal if the PIN
is correct
trick the card in thinking transaction is verified
by signature
trick the terminal in thinking the transaction was
verified by PIN

SEN 05, King’s College London – p. 27/59

Problemswith EMV

it is a wrapper for many protocols
specification by consensus (resulted
unmanageable complexity)
its specification is 700 pages in English plus
2000+ pages for testing, additionally some
further parts are secret
other attacks have been found

SEN 05, King’s College London – p. 28/59

Protocols areDifficult

even the systems designed by experts regularly fail

the one who can fix a system should also be liable
for the losses

cryptography is often not the problem

SEN 05, King’s College London – p. 29/59

ASimple PKProtocol

1. A → B : Kpub
A

2. B → A : Kpub
B

3. A → B : {A,m}Kpub
B

4. B → A : {B,m′}Kpub
A

unfortunately there is a simple man-in-the-
middle-attack

SEN 05, King’s College London – p. 30/59

ASimple PKProtocol

1. A → B : Kpub
A

2. B → A : Kpub
B

3. A → B : {A,m}Kpub
B

4. B → A : {B,m′}Kpub
A

unfortunately there is a simple man-in-the-
middle-attack

SEN 05, King’s College London – p. 30/59

AMITMAttack
1. A → E : Kpub

A

2. E → B : Kpub
E

3. B → E : Kpub
B

4. E → A : Kpub
E

5. A → E : {A,m}Kpub
E

6. E → B : {E,m}Kpub
B

7. B → E : {B,m′}Kpub
E

8. E → A : {E,m′}Kpub
A

and A and B have no chance to detect it

SEN 05, King’s College London – p. 31/59

AMITMAttack
1. A → E : Kpub

A

2. E → B : Kpub
E

3. B → E : Kpub
B

4. E → A : Kpub
E

5. A → E : {A,m}Kpub
E

6. E → B : {E,m}Kpub
B

7. B → E : {B,m′}Kpub
E

8. E → A : {E,m′}Kpub
A

and A and B have no chance to detect it
SEN 05, King’s College London – p. 31/59

Interlock Protocol
The interlock protocol (“best bet” against MITM):

1. A → B : Kpub
A

2. B → A : Kpub
B

3. {A,m}Kpub
B

7→ H1,H2

{B,m′}Kpub
A

7→ M1,M2

4. A → B : H1
5. B → A : {H1,M1}Kpub

A
6. A → B : {H2,M1}Kpub

B
7. B → A : M2

SEN 05, King’s College London – p. 32/59

SplittingMessages

0 X 1 p e U V T G J K + H 7 0 m M j A M 8 p︸ ︷︷ ︸
{A,m}

KpubB

0 X 1 p e U V T G J K︸ ︷︷ ︸
H1

+ H 7 0 m M j A M 8 p︸ ︷︷ ︸
H2

you can also use the even and odd bytes
the point is you cannot decrypt the halves, even if
you have the key

SEN 05, King’s College London – p. 33/59

A → C : Kpub
A

C → B : Kpub
C

B → C : Kpub
B

C → A : Kpub
C

{A,m}Kpub
C

7→ H1,H2

{B,m′}Kpub
C

7→ M1,M2

{C, a}Kpub
B

7→ C1,C2

{C, b}Kpub
A

7→ D1,D2

A → C : H1
C → B : C1
B → C : {C1,M1}Kpub

C
C → A : {H1,D1}Kpub

A
A → C : {H2,D1}Kpub

C
C → B : {C2,M1}Kpub

B
B → C : M2
C → A : D2

m = How is your grandmother? m′ = How is the weather today in London?

SEN 05, King’s College London – p. 34/59

A → C : Kpub
A

C → B : Kpub
C

B → C : Kpub
B

C → A : Kpub
C

{A,m}Kpub
C

7→ H1,H2

{B,m′}Kpub
C

7→ M1,M2

{C, a}Kpub
B

7→ C1,C2

{C, b}Kpub
A

7→ D1,D2

A → C : H1
C → B : C1
B → C : {C1,M1}Kpub

C
C → A : {H1,D1}Kpub

A
A → C : {H2,D1}Kpub

C
C → B : {C2,M1}Kpub

B
B → C : M2
C → A : D2

m = How is your grandmother? m′ = How is the weather today in London?

SEN 05, King’s College London – p. 34/59

you have to ask something that cannot be
imitated (requires A and B know each other)
what happens if m and m′ are voice messages?

So C can either leave the communication
unchanged, or invent a complete new
conversation

SEN 05, King’s College London – p. 35/59

you have to ask something that cannot be
imitated (requires A and B know each other)
what happens if m and m′ are voice messages?

So C can either leave the communication
unchanged, or invent a complete new
conversation

SEN 05, King’s College London – p. 35/59

the moral: establishing a secure connection from
“zero” is almost impossible—you need to rely on
some established trust

that is why PKI relies on certificates, which
however are badly, badly realised

SEN 05, King’s College London – p. 36/59

Trusted Third Parties

Simple protocol for establishing a secure
connection via a mutually trusted 3rd party
(server):

A → S : A,B
S → A : {KAB, {KAB}KBS}KAS
A → B : {KAB}KBS
A → B : {m}KAB

SEN 05, King’s College London – p. 37/59

PKI: TheMain Idea
the idea is to have a certificate authority (CA)
you go to the CA to identify yourself
CA: “I, the CA, have verified that public key PpubBob
belongs to Bob”

CA must be trusted by everybody

certificates are time limited, and can be revoked
What happens if CA issues a false certificate?
Who pays in case of loss? (VeriSign explicitly
limits liability to $100.)

SEN 05, King’s College London – p. 38/59

PKI: Chains of Trust
CA
Root Cert.

Subordinate
CA

Server
Bank.com

Browser
Root Store

Browser
Vendor

CAs make almost no money anymore, because of
stiff competition
browser companies are not really interested in
security; only in market share

SEN 05, King’s College London – p. 39/59

PKI:Weaknesses
CAs just cannot win (make any profit):

there are hundreds of CAs, which issue millions
of certificates and the error rate is small
users (servers) do not want to pay or pay as little
as possible

a CA can issue a certificate for any domain not
needing any permission (CAs are meant to
undergo audits, but…DigiNotar)
if a CA has issued many certificates, it “becomes
too big to fail”
Can we be sure CAs are not just frontends of
some government organisation?

SEN 05, King’s College London – p. 40/59

PKI:Weaknesses
many certificates are issued via Whois, whether
you own the domain…if you hijacked a domain, it
is easy to obtain certificates

the revocation mechanism does not work
(Chrome has given up on general revocation lists)

lax approach to validation of certificates (Have
you ever bypassed certification warnings?)

sometimes you want to actually install invalid
certificates (self-signed)

SEN 05, King’s College London – p. 41/59

PKI: Attacks
Go directly after root certificates

governments can demand private keys
10 years ago it was estimated that breaking a 1024 bit
key takes one year and costs 10 - 30 Mio $; this is now
reduced to 1 Mio $

Go after buggy implementations of certificate
validation
Social Engineering

in 2001 somebody pretended to be from Microsoft and
asked for two code-signing certificates

The eco-system is completely broken (it relies on thousands
of entities to do the right thing). Maybe DNSSEC where
keys can be attached to domain names is a way out.

SEN 05, King’s College London – p. 42/59

Real Attacks
In 2011, DigiNotar (Dutch company) was the first
CA that got compromised comprehensively, and
where many fraudulent certificates were issued to
the wild. It included approximately 300,000 IP
addresses, mostly located in Iran. The attackers
(in Iran?) were likely interested “only” in
collecting gmail passwords.

The Flame malware piggy-bagged on this attack
by advertising malicious Windows updates to
some targeted systems (mostly in Iran, Israel,
Sudan).

SEN 05, King’s College London – p. 43/59

PKI is Broken

PKI and certificates are meant to protect you
against MITM attacks, but if the attack occurs
your are presented with a warning and you need
to decide whether you are under attack.

Webcontent gets often loaded from 3rd-party
servers, which might not be secured

Misaligned incentives: browser vendors are not
interested in breaking webpages with invalid
certificates

SEN 05, King’s College London – p. 44/59

Why are there so many invalid certificates?

insufficient name coverage (www.example.com
should include example.com)
IoT: many appliances have web-based admin
interfaces; the manufacturer cannot know under
which IP and domain name the appliances are
run (so cannot install a valid certificate)
expired certificates, or incomplete chains of trust
(servers are supposed to supply them)

SEN 05, King’s College London – p. 45/59

Mid-Term

homework, handouts, programs…

AnyQuestions?

SEN 05, King’s College London – p. 46/59

Security Engineering

Wright brothers, 1901 Airbus, 2005

SEN 05, King’s College London – p. 47/59

1st Lecture

chip-and-pin, banks vs. customers
the one who can improve security should also be liable
for the losses

hashes and salts to guarantee data integrity

storing passwords (you should know the
difference between brute force attacks and
dictionary attacks; how do salts help?)

SEN 05, King’s College London – p. 48/59

1st Lecture

chip-and-pin, banks vs. customers
the one who can improve security should also be liable
for the losses

hashes and salts to guarantee data integrity

storing passwords (you should know the
difference between brute force attacks and
dictionary attacks; how do salts help?)

SEN 05, King’s College London – p. 48/59

1st Lecture: Cookies
good uses of cookies?

bad uses of cookies: snooping, tracking,
profiling…the “disadvantage” is that the user is in
control, because you can delete them

“Please track me using cookies.”

fingerprinting beyond browser cookies
Pixel Perfect: Fingerprinting Canvas in HTML5
(a research paper from 2012)
http://cseweb.ucsd.edu/~hovav/papers/ms12.html

SEN 05, King’s College London – p. 49/59

http://cseweb.ucsd.edu/~hovav/papers/ms12.html

1st Lecture: Cookies
good uses of cookies?

bad uses of cookies: snooping, tracking,
profiling…the “disadvantage” is that the user is in
control, because you can delete them

“Please track me using cookies.”

fingerprinting beyond browser cookies
Pixel Perfect: Fingerprinting Canvas in HTML5
(a research paper from 2012)
http://cseweb.ucsd.edu/~hovav/papers/ms12.html

SEN 05, King’s College London – p. 49/59

http://cseweb.ucsd.edu/~hovav/papers/ms12.html

1st Lecture: Cookies
a bit of JavaScript and HTML5 + canvas

Firefox Safari

55b2257ad0f20ecbf927fb66a15c61981f7ed8fc 17bc79f8111e345f572a4f87d6cd780b445625d3

no actual drawing needed

in May 2014 a crawl of 100,000 popular webpages revealed
5.5% already use canvas fingerprinting

https:
//securehomes.esat.kuleuven.be/~gacar/persistent/the_web_never_forgets.pdf

SEN 05, King’s College London – p. 50/59

https://securehomes.esat.kuleuven.be/~gacar/persistent/the_web_never_forgets.pdf
https://securehomes.esat.kuleuven.be/~gacar/persistent/the_web_never_forgets.pdf

1st Lecture: Cookies
a bit of JavaScript and HTML5 + canvas

Firefox Safari

55b2257ad0f20ecbf927fb66a15c61981f7ed8fc 17bc79f8111e345f572a4f87d6cd780b445625d3

no actual drawing needed
in May 2014 a crawl of 100,000 popular webpages revealed
5.5% already use canvas fingerprinting

https:
//securehomes.esat.kuleuven.be/~gacar/persistent/the_web_never_forgets.pdf

SEN 05, King’s College London – p. 50/59

https://securehomes.esat.kuleuven.be/~gacar/persistent/the_web_never_forgets.pdf
https://securehomes.esat.kuleuven.be/~gacar/persistent/the_web_never_forgets.pdf

1st Lecture: Cookies

Remember the small web-app I showed you where
a cookie protected a counter?

NYT, the cookie looks the “resource” - harm

imaginary discount unlocked by cookie - no harm

SEN 05, King’s College London – p. 51/59

2nd Lecture: E-Voting
Where are paper ballots better than voice voting?

Integrity
Ballot Secrecy
Voter Authentication
Enfranchisement
Availability

SEN 05, King’s College London – p. 52/59

2nd Lecture: E-Voting
recently an Australian parliamentary committee
found: e-voting is highly vulnerable to hacking
and Australia will not use it any time soon

Alex Halderman, Washington D.C. hack
https://jhalderm.com/pub/papers/dcvoting-fc12.pdf

PDF-ballot tampering at the wireless router (the
modification is nearly undetectable and leaves no
traces; MITM attack with firmware updating)

http://galois.com/wp-content/uploads/2014/11/technical-hack-a-pdf.pdf

SEN 05, King’s College London – p. 53/59

https://jhalderm.com/pub/papers/dcvoting-fc12.pdf
http://galois.com/wp-content/uploads/2014/11/technical-hack-a-pdf.pdf

2nd Lecture: E-Voting
recently an Australian parliamentary committee
found: e-voting is highly vulnerable to hacking
and Australia will not use it any time soon

Alex Halderman, Washington D.C. hack
https://jhalderm.com/pub/papers/dcvoting-fc12.pdf

PDF-ballot tampering at the wireless router (the
modification is nearly undetectable and leaves no
traces; MITM attack with firmware updating)

http://galois.com/wp-content/uploads/2014/11/technical-hack-a-pdf.pdf

SEN 05, King’s College London – p. 53/59

https://jhalderm.com/pub/papers/dcvoting-fc12.pdf
http://galois.com/wp-content/uploads/2014/11/technical-hack-a-pdf.pdf

3rd Lecture:
BufferOverflowAttacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24n=

3

res=6

stack

ret
sp

43

SEN 05, King’s College London – p. 54/59

3rd Lecture:
BufferOverflowAttacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24n=

3

res=6

stack

ret
sp

43

SEN 05, King’s College London – p. 54/59

3rd Lecture:
BufferOverflowAttacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)
n=4

res=24n=
3

res=6

stack

ret
sp

4

3

SEN 05, King’s College London – p. 54/59

3rd Lecture:
BufferOverflowAttacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)
n=4

res=24n=
3

res=6

stack

ret
sp

4

3

SEN 05, King’s College London – p. 54/59

3rd Lecture:
BufferOverflowAttacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4

res=24

n=
3

res=6

stack

ret
sp

43

SEN 05, King’s College London – p. 54/59

3rd Lecture:
BufferOverflowAttacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24n=

3

res=6

stack

ret
sp

43

SEN 05, King’s College London – p. 54/59

3rd Lecture:
BufferOverflowAttacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24

n=
3

res=6

stack

ret
sp

4

3

SEN 05, King’s College London – p. 54/59

3rd Lecture:
BufferOverflowAttacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24

n=
3

res=6

stack

ret
sp

4

3

SEN 05, King’s College London – p. 54/59

3rd Lecture:
BufferOverflowAttacks
the problem arises from the way C/C++ organises
its function calls

main
prog.

fact(n)

n=4
res=24n=

3

res=6

stack

ret
sp

43

SEN 05, King’s College London – p. 54/59

main
prog.

fact(n)

n=4 user
input

stack

4
ret
sp

buffer

SEN 05, King’s College London – p. 55/59

main
prog.

fact(n)

n=4 user
input

stack

4
ret
sp

buffer

SEN 05, King’s College London – p. 55/59

main
prog.

fact(n)
n=4

user
input

stack

4
ret
sp

buffer

SEN 05, King’s College London – p. 55/59

main
prog.

fact(n)
n=4

user
input

stack

4
ret
sp

buffer

SEN 05, King’s College London – p. 55/59

main
prog.

fact(n)
n=4 user

input

stack

4
ret
sp

buffer

SEN 05, King’s College London – p. 55/59

main
prog.

fact(n)
n=4 user

input

stack

4
@a#
!?w;p

buffer

SEN 05, King’s College London – p. 55/59

main
prog.

fact(n)
n=4 user

input

stack

4
@a#
!?w;p

buffer

SEN 05, King’s College London – p. 55/59

main
prog.

fact(n)
n=4 user

input

stack

4
@a#
!?w;p

buffer

SEN 05, King’s College London – p. 55/59

3rd Lecture:
BufferOverflowAttacks
US National Vulnerability Database
(636 out of 6675 in 2014)

1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

5

10

15

20

0,40,40,50,10,52,0
3,7

1,1 1,4 2,1

6,7
10,09,8

11,6

16,0
13,714,6

9,5

15,2

19,3

year

%
of

to
ta
la

tt
ac

ks

http://web.nvd.nist.gov/view/vuln/statistics
SEN 05, King’s College London – p. 56/59

http://web.nvd.nist.gov/view/vuln/statistics

4th Lecture:
Unix Access Control

privileges are specified by file access permissions
(“everything is a file”)

Internet
Application Interface

unprivileged
process

privileged
process

the idea is to make the attack surface smaller and
mitigate the consequences of an attack

SEN 05, King’s College London – p. 57/59

4th Lecture:
Unix Access Control

when a file with setuid is executed, the resulting
process will assume the UID given to the owner
of the file

$ ls -ld . * */*
drwxr-xr-x 1 ping staff 32768 Apr 2 2010 .
-rw----r-- 1 ping students 31359 Jul 24 2011 manual.txt
-r--rw--w- 1 bob students 4359 Jul 24 2011 report.txt
-rwsr--r-x 1 bob students 141359 Jun 1 2013 microedit
dr--r-xr-x 1 bob staff 32768 Jul 23 2011 src
-rw-r--r-- 1 bob staff 81359 Feb 28 2012 src/code.c
-r--rw---- 1 emma students 959 Jan 23 2012 src/code.h

SEN 05, King’s College London – p. 58/59

4th Lecture:
Unix Access Control

Alice wants to have her files readable, except for
her office mates.

make sure you understand the setuid and setgid
bits; why are they necessary for login and passwd

SEN 05, King’s College London – p. 59/59

