
Handout 3 (Buffer Overflow AĴacks)
By far the most popular aĴack method on computers are buffer overflow at-
tacks or variations thereof. The popularity is unfortunate because we now have
technology to prevent them effectively. But these kind of aĴacks are still very
relevant even today since there are many legacy systems out there and also
many modern embedded systems do not take any precautions to prevent such
aĴacks.

To understand how buffer overflow aĴacks work we have to have a look
at how computers work “under the hood” (on the machine level) and also un-
derstand some aspects of the C/C++ programming language. This might not
be everyday fare for computer science students, but who said that criminal
hackers restrict themselves to everyday fare? Not to mention the free-riding
script-kiddies who use this technology without knowing what are the under-
lying ideas.

For buffer overflow aĴacks to work, a number of innocent design decisions,
which are really benign on their own, need to conspire against you. All these
decisions were preĴy much taken in a time when there was no Internet: C was
introduced around 1973, the Internet TCP/IP protocol was standardised in 1982
by which time there were maybe 500 servers connected worldwide (all users
were well-behaved), Intel’s first 8086 CPUs arrived around 1977. So nobody of
the creators can really be blamed, but as mentioned above we should already
be way beyond the point that buffer overflow aĴacks are worth a thought. Un-
fortunately this is far from the truth. I let you think why?

One such “benign” design decision is how the memory is laid out into dif-
ferent regions for each process.

text

heap

stack

lower
address

higher
address

grows
older

newer

The text region contains the program code (usually this region is read-only).
The heap stores all data the programmer explicitly allocates. For us the most
interesting region is the stack, which contains data mostly associated with the
“control flow” of the program. Notice that the stack grows from a higher ad-
dresses to lower addresses. That means that older items on the stack will be
stored behind newer items. Let’s look a bit closer what happens with the stack.
Consider the the trivial C program.

1

1 void foo(int a, int b, int c) {
2 char buffer1[6] = "abcde";
3 char buffer2[10] = "123456789";
4 }
5

6 void main() {
7 foo(1,2,3);
8 }

The main function calls foo with three argument. Foo contains two (local)
buffers. The interesting point is what will the stack looks like after Line 3 has
been executed? The answer is as follows:

main mainmain

arg3=3

arg2=2

arg1=1

ret

last sp

buf1

buf2

back to main()

On the left is the stack before foo is called; on the right is the stack after foo
finishes. The function call to foo in Line 7 pushes the arguments onto the stack
in reverse order—shown in the middle. Therefore first 3 then 2 and finally 1.
Then it pushes the return address to the stack where execution should resume
once foo has finished. The last stack pointer (sp) is needed in order to clean up
the stack to the last level—in fact there is no cleaning involved, but just the top
of the stack will be set back. The two buffers are also on the stack, because they
are local data within foo.

Another part of the “conspiracy” is that library functions in C look typically
as follows:

void strcpy(char *src, char *dst) {
int i = 0;
while (src[i] != "\0") {

dst[i] = src[i];
i = i + 1;

}
}

2

This function copies data from a source src to a destination dst. It copies the
data until it reaches a zero-byte ("\0").

A Crash-Course on GDB

• (l)ist n – listing the source file from line n

• disassemble fun-name

• run – starts the program

• (b)reak line-number – set break point

• (c)ontinue – continue execution until next breakpoint in a line number

• x/nxw addr – print out n words starting from address addr, the address
could be $esp for looking at the content of the stack

• x/nxb addr – print out n bytes

If you want to know more about buffer overflow aĴacks, the original Phrack
article “Smashing The Stack For Fun And Profit” by Elias Levy (also known as
Aleph One) is an engaging read:

http://phrack.org/issues/49/14.html

This is an article from 1996 and some parts are not up-to-date anymore. The
article called “Smashing the Stack in 2010”

http://www.mgraziano.info/docs/stsi2010.pdf

updates, as the name says, most information to 2010.

3

http://phrack.org/issues/49/14.html
http://www.mgraziano.info/docs/stsi2010.pdf

