slides/slides06.tex
changeset 422 abe178b3197e
parent 419 667a39dda86e
child 423 11b46fa92a85
--- a/slides/slides06.tex	Sun Oct 25 23:34:04 2015 +0000
+++ b/slides/slides06.tex	Thu Nov 05 02:11:13 2015 +0000
@@ -427,7 +427,7 @@
 
 \begin{center}
 \begin{tabular}{ll}
-\bl{$b_i = 0$}: & \bl{$A^{s_i} \equiv B\;mod\;p$}\\
+\bl{$b_i = 0$}: & \bl{$A^{s_i} \equiv h_i\;mod\;p$}\\
 \bl{$b_i = 1$}: & \bl{$A^{s_i}  \equiv h_i * h_j^{-1}  \;mod\; p$}\\
 \end{tabular}
 \end{center}\bigskip
@@ -435,7 +435,7 @@
 Bob was sent
 
 \begin{center}
-\bl{$r_j - r _j$},  \bl{$r_m - r _j$}, \ldots, \bl{$r_p - r _j$ \;mod \;p} 
+\bl{$r_j - r_j$},  \bl{$r_m - r_j$}, \ldots, \bl{$r_p - r_j \;mod \;p - 1$} 
 \end{center}
 
 where the corresponding bits were 
@@ -465,7 +465,7 @@
 \end{enumerate}\bigskip\pause
 
 In order to cheat, Alice has to guess all bits in advance. She
-has only \bl{$\frac{1}{2}^z$} chance.\bigskip\\
+has only \bl{$\frac{1}{2}^z$} chance of doing so.\bigskip\\
 
 \small\hspace{7mm}
 \textcolor{gray}{(explanation $\rightarrow$ \url{http://goo.gl/irL9GK})}