--- a/slides/slides06.tex Sun Oct 25 23:34:04 2015 +0000
+++ b/slides/slides06.tex Thu Nov 05 02:11:13 2015 +0000
@@ -427,7 +427,7 @@
\begin{center}
\begin{tabular}{ll}
-\bl{$b_i = 0$}: & \bl{$A^{s_i} \equiv B\;mod\;p$}\\
+\bl{$b_i = 0$}: & \bl{$A^{s_i} \equiv h_i\;mod\;p$}\\
\bl{$b_i = 1$}: & \bl{$A^{s_i} \equiv h_i * h_j^{-1} \;mod\; p$}\\
\end{tabular}
\end{center}\bigskip
@@ -435,7 +435,7 @@
Bob was sent
\begin{center}
-\bl{$r_j - r _j$}, \bl{$r_m - r _j$}, \ldots, \bl{$r_p - r _j$ \;mod \;p}
+\bl{$r_j - r_j$}, \bl{$r_m - r_j$}, \ldots, \bl{$r_p - r_j \;mod \;p - 1$}
\end{center}
where the corresponding bits were
@@ -465,7 +465,7 @@
\end{enumerate}\bigskip\pause
In order to cheat, Alice has to guess all bits in advance. She
-has only \bl{$\frac{1}{2}^z$} chance.\bigskip\\
+has only \bl{$\frac{1}{2}^z$} chance of doing so.\bigskip\\
\small\hspace{7mm}
\textcolor{gray}{(explanation $\rightarrow$ \url{http://goo.gl/irL9GK})}