|
1 \documentclass{article} |
|
2 \usepackage{charter} |
|
3 \usepackage{hyperref} |
|
4 \usepackage{amssymb} |
|
5 |
|
6 \begin{document} |
|
7 |
|
8 \section*{Homework 6} |
|
9 |
|
10 \begin{enumerate} |
|
11 \item Access-control logic includes formulas of the form |
|
12 \begin{center} |
|
13 $P\;\textit{says}\;F$ |
|
14 \end{center} |
|
15 |
|
16 where $P$ is a principal and $F$ a formula. Give two inference rules |
|
17 of access-control logic involving $\textit{says}$. |
|
18 |
|
19 \item (Removed) Was already used in HW 5 |
|
20 |
|
21 \item |
|
22 Assume an access control logic with security levels, say top secret ({\it TS}), |
|
23 secret ({\it S}) and public ({\it P}), with |
|
24 \begin{center} |
|
25 $slev(\textit{P}) < slev(\textit{S}) < slev(\textit{TS})$ |
|
26 \end{center} |
|
27 |
|
28 (a) Modify the formula |
|
29 \begin{center} |
|
30 \begin{tabular}{l} |
|
31 $P\;\textit{controls}\;\textit{Permitted}(O, \textit{write})$\\ |
|
32 \end{tabular} |
|
33 \end{center} |
|
34 using security levels so that it satisfies the {\it write rule} from the {\it |
|
35 Bell-LaPadula} access policy. Do the same again, but satisfy the {\it write rule} |
|
36 from the {\it Biba} access policy. |
|
37 |
|
38 (b)Modify the formula |
|
39 \begin{center} |
|
40 \begin{tabular}{l} |
|
41 $P\;\textit{controls}\;\textit{Permitted}(O, \textit{read})$\\ |
|
42 \end{tabular} |
|
43 \end{center} |
|
44 using security levels so that it satisfies the {\it read rule} from the {\it |
|
45 Bell-LaPadula} access policy. Do the same again, but satisfy the {\it read rule} |
|
46 from the {\it Biba} access policy. |
|
47 |
|
48 \item Assume two security levels $\textit{S}$ and $\textit{TS}$, which are ordered so that $slev(\textit{S}) < slev(\textit{TS})$. |
|
49 Assume further the substitution rules |
|
50 \begin{center} |
|
51 \begin{tabular}{c} |
|
52 $\Gamma \vdash slev(P) = l_1$ \hspace{4mm} $\Gamma \vdash slev(Q) = l_2$ |
|
53 \hspace{4mm} $\Gamma \vdash l_1 < l_2$\\\hline |
|
54 $\Gamma \vdash slev(P) < slev(Q)$ |
|
55 \end{tabular} |
|
56 \end{center} |
|
57 |
|
58 \begin{center} |
|
59 \begin{tabular}{c} |
|
60 $\Gamma \vdash slev(P) = l$ \hspace{4mm} $\Gamma \vdash slev(Q) = l$\\\hline |
|
61 $\Gamma \vdash slev(P) = slev(Q)$ |
|
62 \end{tabular} |
|
63 \end{center} |
|
64 |
|
65 Let $\Gamma$ be the set containing the following six formulas |
|
66 \begin{center} |
|
67 \begin{tabular}{l} |
|
68 \\ |
|
69 $slev(\textit{S}) < slev(\textit{TS})$\smallskip\\ |
|
70 $slev(\textit{Agent}) = slev(\textit{TS})$\smallskip\\ |
|
71 $slev(\textit{File}_1) = slev(\textit{S})$\smallskip\\ |
|
72 $slev(\textit{File}_2) = slev(\textit{TS})$\smallskip\\ |
|
73 $\forall O.\;slev(O) < slev(\textit{Agent}) \Rightarrow |
|
74 (\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\smallskip\\ |
|
75 $\forall O.\;slev(O) = slev(\textit{Agent}) \Rightarrow |
|
76 (\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\\ |
|
77 \\ |
|
78 \end{tabular} |
|
79 \end{center} |
|
80 Using the inference rules of access-control logic and the substitution rules shown above, |
|
81 give proofs for the two judgements |
|
82 \begin{center} |
|
83 \begin{tabular}{l} |
|
84 $\Gamma \vdash |
|
85 (\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_1, |
|
86 \textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_1, \textit{read})$\smallskip\\ |
|
87 $\Gamma \vdash |
|
88 (\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_2, |
|
89 \textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_2, \textit{read})$\\ |
|
90 \end{tabular} |
|
91 \end{center} |
|
92 |
|
93 \end{enumerate} |
|
94 \end{document} |
|
95 |
|
96 %%% Local Variables: |
|
97 %%% mode: latex |
|
98 %%% TeX-master: t |
|
99 %%% End: |