hws/hw06.tex
changeset 298 5f6b72bb5f7f
parent 134 e4fda36422dd
child 414 9a3aa8c39951
equal deleted inserted replaced
297:530b98bcc36f 298:5f6b72bb5f7f
     6 \begin{document}
     6 \begin{document}
     7 
     7 
     8 \section*{Homework 6}
     8 \section*{Homework 6}
     9 
     9 
    10 \begin{enumerate}
    10 \begin{enumerate}
    11 \item Access-control logic includes formulas of the form
    11 \item Zero-knowledge protocols depend on three main properties called
    12 \begin{center}
    12   completeness, soundness and zero-knowledge.  Explain what they mean?
    13 $P\;\textit{says}\;F$
       
    14 \end{center}
       
    15 
    13 
    16 where $P$ is a principal and $F$ a formula. Give two inference rules
    14 \item Why do zero-knowledge protocols require an NP-problem as building
    17 of access-control logic involving $\textit{says}$.
    15   block?
    18 
    16 
    19 \item 
    17 \item Why is it a good choice in a ZKP to flip a coin when requesting a 
    20 Assume an access control logic with security levels, say top secret ({\it TS}),
    18   proof from the person who knows the secret?
    21 secret ({\it S}) and public ({\it P}), with
    19 \end{enumerate}
    22 \begin{center}
       
    23 $slev(\textit{P}) < slev(\textit{S}) < slev(\textit{TS})$
       
    24 \end{center}
       
    25 
    20 
    26 (a) Modify the formula
       
    27 \begin{center}
       
    28 \begin{tabular}{l}
       
    29 $P\;\textit{controls}\;\textit{Permitted}(O, \textit{write})$\\
       
    30 \end{tabular}
       
    31 \end{center}
       
    32 using security levels so that it satisfies the {\it write rule} from the {\it
       
    33 Bell-LaPadula} access policy. Do the same again, but satisfy the {\it write rule}
       
    34 from the {\it Biba} access policy.
       
    35 
       
    36 (b)Modify the formula
       
    37 \begin{center}
       
    38 \begin{tabular}{l}
       
    39 $P\;\textit{controls}\;\textit{Permitted}(O, \textit{read})$\\
       
    40 \end{tabular}
       
    41 \end{center}
       
    42 using security levels so that it satisfies the {\it read rule} from the {\it
       
    43 Bell-LaPadula} access policy. Do the same again, but satisfy the {\it read rule}
       
    44 from the {\it Biba} access policy.
       
    45 
       
    46 \item Assume two security levels $\textit{S}$ and $\textit{TS}$, which are ordered so that $slev(\textit{S}) < slev(\textit{TS})$. 
       
    47 Assume further the substitution rules
       
    48 \begin{center}
       
    49 \begin{tabular}{c}
       
    50 $\Gamma \vdash slev(P) = l_1$ \hspace{4mm} $\Gamma \vdash slev(Q) = l_2$
       
    51 \hspace{4mm} $\Gamma \vdash l_1 < l_2$\\\hline
       
    52 $\Gamma \vdash slev(P) < slev(Q)$
       
    53 \end{tabular}
       
    54 \end{center}
       
    55 
       
    56 \begin{center}
       
    57 \begin{tabular}{c}
       
    58 $\Gamma \vdash slev(P) = l$ \hspace{4mm} $\Gamma \vdash slev(Q) = l$\\\hline
       
    59 $\Gamma \vdash slev(P) = slev(Q)$
       
    60 \end{tabular}
       
    61 \end{center}
       
    62 
       
    63 Let $\Gamma$ be the set containing the following six formulas
       
    64 \begin{center}
       
    65 \begin{tabular}{l}
       
    66 \\
       
    67 $slev(\textit{S}) < slev(\textit{TS})$\smallskip\\
       
    68 $slev(\textit{Agent}) = slev(\textit{TS})$\smallskip\\
       
    69 $slev(\textit{File}_1) = slev(\textit{S})$\smallskip\\
       
    70 $slev(\textit{File}_2) = slev(\textit{TS})$\smallskip\\
       
    71 $\forall O.\;slev(O) < slev(\textit{Agent}) \Rightarrow 
       
    72 (\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\smallskip\\
       
    73 $\forall O.\;slev(O) = slev(\textit{Agent}) \Rightarrow 
       
    74 (\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\\
       
    75 \\
       
    76 \end{tabular}
       
    77 \end{center}
       
    78 Using the inference rules of access-control logic and the substitution rules shown above,
       
    79 give proofs for the two judgements
       
    80 \begin{center}
       
    81 \begin{tabular}{l}
       
    82 $\Gamma \vdash
       
    83 (\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_1,
       
    84 \textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_1, \textit{read})$\smallskip\\
       
    85 $\Gamma \vdash
       
    86 (\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_2,
       
    87 \textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_2, \textit{read})$\\
       
    88 \end{tabular}
       
    89 \end{center}
       
    90 
       
    91 \end{enumerate}
       
    92 \end{document}
    21 \end{document}
    93 
    22 
    94 %%% Local Variables: 
    23 %%% Local Variables: 
    95 %%% mode: latex
    24 %%% mode: latex
    96 %%% TeX-master: t
    25 %%% TeX-master: t