63
|
1 |
\documentclass{article}
|
|
2 |
\usepackage{charter}
|
|
3 |
\usepackage{hyperref}
|
|
4 |
\usepackage{amssymb}
|
|
5 |
|
|
6 |
\begin{document}
|
|
7 |
|
|
8 |
\section*{Homework 6}
|
|
9 |
|
|
10 |
\begin{enumerate}
|
|
11 |
\item Access-control logic includes formulas of the form
|
|
12 |
\begin{center}
|
|
13 |
$P\;\textit{says}\;F$
|
|
14 |
\end{center}
|
|
15 |
|
|
16 |
where $P$ is a principal and $F$ a formula. Give two inference rules
|
|
17 |
of access-control logic involving $\textit{says}$.
|
|
18 |
|
|
19 |
\item
|
|
20 |
The informal meaning of the formula $P\;\textit{controls}\;F$ is `$P$ is entitled
|
|
21 |
to do $F$'. Give a definition for this formula in terms of $\textit{says}$.
|
|
22 |
|
|
23 |
\item
|
|
24 |
Assume an access control logic with security levels, say top secret ({\it TS}),
|
|
25 |
secret ({\it S}) and public ({\it P}), with
|
|
26 |
\begin{center}
|
|
27 |
$slev(\textit{P}) < slev(\textit{S}) < slev(\textit{TS})$
|
|
28 |
\end{center}
|
|
29 |
|
|
30 |
(a) Modify the formula
|
|
31 |
\begin{center}
|
|
32 |
\begin{tabular}{l}
|
|
33 |
$P\;\textit{controls}\;\textit{Permitted}(O, \textit{write})$\\
|
|
34 |
\end{tabular}
|
|
35 |
\end{center}
|
|
36 |
using security levels so that it satisfies the {\it write rule} from the {\it
|
|
37 |
Bell-LaPadula} access policy. Do the same again, but satisfy the {\it write rule}
|
|
38 |
from the {\it Biba} access policy.
|
|
39 |
|
|
40 |
(b)Modify the formula
|
|
41 |
\begin{center}
|
|
42 |
\begin{tabular}{l}
|
|
43 |
$P\;\textit{controls}\;\textit{Permitted}(O, \textit{read})$\\
|
|
44 |
\end{tabular}
|
|
45 |
\end{center}
|
|
46 |
using security levels so that it satisfies the {\it read rule} from the {\it
|
|
47 |
Bell-LaPadula} access policy. Do the same again, but satisfy the {\it read rule}
|
|
48 |
from the {\it Biba} access policy.
|
|
49 |
|
|
50 |
\item Assume two security levels $\textit{S}$ and $\textit{TS}$, which are ordered so that $slev(\textit{S}) < slev(\textit{TS})$.
|
|
51 |
Assume further the substitution rules
|
|
52 |
\begin{center}
|
|
53 |
\begin{tabular}{c}
|
|
54 |
$\Gamma \vdash slev(P) = l_1$ \hspace{4mm} $\Gamma \vdash slev(Q) = l_2$
|
|
55 |
\hspace{4mm} $\Gamma \vdash l_1 < l_2$\\\hline
|
|
56 |
$\Gamma \vdash slev(P) < slev(Q)$
|
|
57 |
\end{tabular}
|
|
58 |
\end{center}
|
|
59 |
|
|
60 |
\begin{center}
|
|
61 |
\begin{tabular}{c}
|
|
62 |
$\Gamma \vdash slev(P) = l$ \hspace{4mm} $\Gamma \vdash slev(Q) = l$\\\hline
|
|
63 |
$\Gamma \vdash slev(P) = slev(Q)$
|
|
64 |
\end{tabular}
|
|
65 |
\end{center}
|
|
66 |
|
|
67 |
Let $\Gamma$ be the set containing the following six formulas
|
|
68 |
\begin{center}
|
|
69 |
\begin{tabular}{l}
|
|
70 |
\\
|
|
71 |
$slev(\textit{S}) < slev(\textit{TS})$\smallskip\\
|
|
72 |
$slev(\textit{Agent}) = \textit{TS}$\smallskip\\
|
|
73 |
$slev(\textit{File}_1) = \textit{S}$\smallskip\\
|
|
74 |
$slev(\textit{File}_2) = \textit{TS}$\smallskip\\
|
|
75 |
$\forall O.\;slev(O) < slev(\textit{Agent}) \Rightarrow
|
|
76 |
(\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\smallskip\\
|
|
77 |
$\forall O.\;slev(O) = slev(\textit{Agent}) \Rightarrow
|
|
78 |
(\textit{Agent}\;\textit{controls}\;\textit{Permitted}(O, \textit{read}))$\\
|
|
79 |
\\
|
|
80 |
\end{tabular}
|
|
81 |
\end{center}
|
|
82 |
Using the inference rules of access-control logic and the substitution rules shown above,
|
|
83 |
give proofs for the two judgements
|
|
84 |
\begin{center}
|
|
85 |
\begin{tabular}{l}
|
|
86 |
$\Gamma \vdash
|
|
87 |
(\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_1,
|
|
88 |
\textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_1, \textit{read})$\smallskip\\
|
|
89 |
$\Gamma \vdash
|
|
90 |
(\textit{Agent}\;\textit{says}\;\textit{Permitted}(\textit{File}_2,
|
|
91 |
\textit{read})) \Rightarrow \textit{Permitted}(\textit{File}_2, \textit{read})$\\
|
|
92 |
\end{tabular}
|
|
93 |
\end{center}
|
|
94 |
|
|
95 |
\end{enumerate}
|
|
96 |
\end{document}
|
|
97 |
|
|
98 |
%%% Local Variables:
|
|
99 |
%%% mode: latex
|
|
100 |
%%% TeX-master: t
|
|
101 |
%%% End:
|